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Abstract:  
 

In the hedonic model, when an investigator wishes to merge property sale data 

with spatial data on an environmental amenity, one problem encountered in the matching 

process is that the environmental data are usually limited. A challenging task is how to 

scale site and time specific environmental data to all property sales within a defined 

geographical area. Spatial interpolation methods provide us a tool to scale up our 

economic analysis from specific sites to broad geographical area. In this study, we 

investigate the effects of these spatial interpolation methods on the estimation of a 

hedonic model in the context of an invasive forest pest, the hemlock wooly adelgid. Our 

results indicate a statistically significant relationship between hemlock health and 

residential property values at the 0.1 km level. Repeat-sale model provides us more 

robust economic estimation results than tradition hedonic model across different 

interpolation methods. 
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1. Introduction  

Property value modeling is a commonly employed method to value changes in 

environmental assets based on the idea that the prices of properties represents the sum of 

values associated with property attributes (Palmquist 1991). Recent years have seen 

important developments and refinements in the property value method, which include 

natural experiments to identify price effects, access to large-scale electronic data on 

property sale prices and characteristics, and the use of GIS (geographic information 

system) data to incorporate spatial dimensions of property attributes (Calhoun 2001, 

Parmeter and Pope 2009, Paterson and Boyle 2002).  

When an investigator wishes to merge property sale data with spatial data on an 

environmental amenity, one problem encountered in the matching process is that the 

environmental data may be limited (Palmquist and Smith 2001). Although environmental 

data varies across broad geographical area, these data are usually measured at certain 

sample sites. For example, if one is interested in how air quality affects property prices, 

the property data may include all sales in a given area for a specified period of time while 

the air-quality data is collected at fixed monitoring sites 1 . The air quality data is 

measured discrete over space, but small increments in time, e.g., hourly. For other 

environmental media, in addition to being spatially discrete, the data may only be 

reported for specific points in time and the timing of measurements may vary across sites, 

e.g., volunteer lake water quality monitoring2. A challenging task is how to scale or 

extrapolate site and time specific environmental data to all property sales within a defined 

geographical area.  

                                                           
1 http://www.epa.gov/airquality/airdata/, accessed December 12, 2013. 
2 http://water.epa.gov/type/watersheds/monitoring/vol.cfm, accessed December 12, 2013 

http://www.epa.gov/airquality/airdata/
http://water.epa.gov/type/watersheds/monitoring/vol.cfm
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The method commonly conducted to enlarge the spatial analysis scale under limited 

information is benefit transfer method (Troy and Wilson 2006, plummer 2009, Nelson et 

al. 2009, Richardson et al. 2014). It conducts the property value model just using limited 

environmental information, and then applies the model estimates to new study areas 

under the assumption that there exist similar impacts over geographical area. Or instead 

of directly transferring the estimates, they would consider to make adjustments based on 

the socioeconomic and environmental conditions (Loomis 1992, Shrestha and Loomis 

2003). However, even if the environmental conditions of those specific study sites are 

representative of the overall geographical area, the property sales data at these sampled 

sites may not be representative of all the property values over space. When we only 

consider the impact at these specific sites, we would lose the information from property 

sales data over large spatial area. Then it would introduce prediction errors by applying 

the benefit transfer methods to enlarge the spatial analysis scale.  

Another method we could consider is to first employ geostatistical methods to 

interpolate the environmental conditions from specific sites to larger geographical study 

area. And then we could utilize all the property sale data and match them with the 

interpolated environmental condition to conduct the economic impact analysis. However, 

there may exist statistical interpolation errors at the first step because of the 

environmental distribution uncertainty over space. These interpolation errors would be 

introduced into property value model as measurement errors and also influence the 

prediction accuracy of economic impacts.   

Here we investigate the effect of spatial data extrapolation on the estimation of 

property sale model in the context of an invasive forest pest, the hemlock wooly adelgid 
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(Brush, 1979, McClure 1991, Orwig et al., 2002). Here the data on the infestation are 

measured at discrete spatial locations and points in time like for the water and air quality 

data, but the host (hemlock trees) does not provide for continuous dispersal through space. 

Hemlock trees are clustered in discrete stands and, thus, the infestation must jump from 

stand to stand as the infestation spreads spatially through time. There could exist larger 

spatial distribution uncertainty over space than water and air quality data. 

We employ the spatial interpolation methods to predict the hemlock health 

conditions from sampled stands to all the hemlock stands over study area. We investigate 

the use of three spatial data interpolation methods: inverse distance weighting (IDW), 

splines, and Kriging. We also check the spatial interpolation errors from spatial 

distribution uncertainty and make adjustments of the interpolation errors based on cross-

validation results. We check the robustness of estimation results from both a hedonic 

property value model and a repeat-sale model and investigate the effects of spatial data 

interpolation on the property sale models. 

Our results indicate that the invasion of HWA has caused dramatic losses of 

healthy hemlock stands in the study area. Both the hedonic model and repeated sale 

model show that there exist substantial accompanying losses in property value for the 

households located nearby. Spatial interpolation methods provides us useful tools to scale 

up our economic analysis. The repeat sale model gives us robust estimation results across 

different spatial interpolation methodologies.  

2. Literature Review 
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Hedonic models are employed to investigate environmental issues based on 

spatial proximity to environmental amenities and dis-amenities. Some studies just match 

property data directly with data from environmental database, e.g. water quality studies. 

Boyle et al. (1999) measured the water clarity of 25 lakes in Maine and found that the 

water quality would significantly impact the residential property value located nearby. 

Poor et al. (2007) acquired the water quality data from twenty-two water-monitoring 

stations located throughout the watershed of the St. Mary's River, Maryland. And they 

assigned the water quality measures to each sale property from the closest monitoring 

station. 

Other studies use ArcGIS tools to match property data with spatially explicit 

information on environmental amenities and dis-amenities. e.g. proximity to open space. 

Geoghegan et al. (1997) calculated measures of percent open space around household 

properties. They found that the land uses surrounding a parcel have an influence on the 

price.  Cho et al. (2008) calculated the distance to nearest evergreen, deciduous and 

mixed forest patches for each household. Proximities to evergreen forest are valued 

positively in the rural–urban interfaces, while the proximities to deciduous forest and 

mixed forest are valued positively in the urban area.  

These spatial interpolation methods has not commonly employed in economic 

research except for the evaluation analysis of air pollution or water quality. The reason is 

that the air pollution or water quality are only measured at several monitoring stations, 

while the households are located across the space. Both air and water quality, within a 

specific area, such as an air quality basin or coastal bay might be consider ubiquitous, in 

that pollutants disperse out from emission sites and perhaps experience some rate of 
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decay over distance and/or time. Previous researches employed spatial statistical method 

to interpolate the environmental condition measurements across study area and then 

match them with the household sales value based on their locations (Leggett and 

Bockstael 2000, Kim et al. 2003, Beron et al. 2004, Anselin and Lozano-Gracia 2008, 

Fernandez-Aviles et al. 2012). Ara et al. (2006) interpolated beach water quality data 

over space and time. The water quality along 18 beaches was originally measured at 

different place and at different time. They also employed geo-statistical method to 

interpolate the water quality and matched the household properties with the interpolated 

water quality of the nearest beach. 

However, there are seldom studies which investigate how spatial interpolation 

will affect our hedonic economic analysis when we use prediction results rather than the 

true measurements in the property vale models. Anselin and Le Gallo (2006) have 

compared different spatial interpolation techniques (Thiessen polygons, inverse distance 

weighting, Kriging and splines) when their prediction results are used as the 

measurement of air quality in the hedonic models. Their results showed that Kriging 

provides the best results for interpretation.  

In our case, we try to investigate the economic losses from hemlock mortality 

caused by HWA infestation. Holmes et al. (2010a) found that severely-defoliated 

hemlocks in northern New Jersey reduced the values of residential parcels with the 

stricken trees and reduced the value of nearby (up to 0.5km) properties. In our study, we 

employ the interpolation approach (inverse distance weighting, Kriging and splines) to 

scale up the analysis from specific area (e.g., county) to state level. We also investigate 
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how different spatial interpolation methodologies would affect the hedonic model and 

repeated sale model analysis. 

As the hemlock stands are spread discrete over space, and the outbreak of HWA 

infestation may not always happen continuous through space. There are much more 

variation of the sampled HWA damage data compared to the measurement of air 

pollution. Different with Anselin and Le Gallo (2006), we also employed cross-validation 

results to make adjustments of kriging interpolation methods. Because of our data 

structure, we can also compare the property value analysis results based only on sampled 

hemlock damage data (true measurements) with the results based on interpolated data 

(prediction results). And here we will check how the different spatial interpolation 

methods would affect the inference from property value models in this data structure. 

3. Application 

 In the research here, our application is to estimate the economic consequences of 

the spatial and temporal expansion of HWA through central Connecticut and 

Massachusetts. The HWA was first introduced into Virginia from Japan in the early 

1950s; in the past half-century, it has spread to hemlock forests along the east coast of the 

U.S and became a threat to the eastern hemlock forests of New England (McClure 1991). 

The population growth of HWA is sensitive to temperature and precipitation, and climate 

change is expected to favor the spread of HWA (Orwig et al., 2002).  

It is thought that changes in climate may increase the frequency and severity of 

forest fires, insect and disease outbreaks, droughts and storms that can affect trees (Dale 

et al., 2001; Bentz, 2008; Frankel, 2008). The subsequent losses of trees can impact 
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property values via reductions in shading to reduce heat impacts, reductions in the scenic 

aesthetics of an area and other consequences. Dying and dead trees can pose risks to 

residents and their homes. The hemlock wooly adelgid, as an example case study, causes 

death of affected trees within about five years. Forward-looking communities can adapt 

their tree planting and protection efforts to lessen these climate-induced impacts and 

information on the economic value of tree canopy cover can be used to help justify such 

efforts. Thus, exploring the impacts of data extrapolation to investigate the economic 

effects of forest impacts is important to support forest and climate policy.  

In an effort to understand and characterize hemlock stands at the local and 

landscape levels in New England, ecologists at the Harvard Forest identified, mapped, 

and characterized hemlock stands within a 7,500 km2 area covers central portions of 

Connecticut and Massachusetts (see Figure 1). In both states, all stands of eastern 

hemlock >1.3 ha in area were identified using high-resolution aerial photographs that 

were then scanned and digitally transferred into a GIS overlay. A total of 6,126 hemlock 

stands were identified in the study area using this method.  

The field surveys were conducted at 142 hemlock stands (red dots in Figure 4.2), 

and hemlock health characteristics were documented in these sampled stands. The 

sampled stands were distributed as evenly as possible over the study area. Hemlock vigor 

and live basal area are two key hemlock damage characteristics recorded in 2007, 2009, 

and 2011. Live basal area (m2/ha) is the area of a given section of land that is occupied by 

the cross-section of tree trunks and stems at their basal. Vigor was measured on the basis 

of the amount of retained foliage in each stand. There are four vigor categories; 1 = 76 – 

99% foliar loss, 2= 51-75% foliar loss, 3 = 26-50% foliar loss and 4 = 0 – 25% foliar loss. 
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Table 1 shows the summary descriptive statistics of live basal area and frequency 

distribution of hemlock vigor for the sampled hemlock stands. Both the mean and 

maximum value of hemlock live basal area decreased between 2007 and 2011. Except for 

the severely damaged hemlock stands (vigor=1), the number of damaged hemlock stands 

(vigor=2 or vigor=3) is increasing through time while the number of healthy hemlock 

stands (vigor=4) is decreasing. It is likely that the number of severely damaged hemlock 

stands dropped in 2011 because dead trees either fell over or were removed, and were no 

longer included in the survey.  

To investigate the effect of HWA infestation on residential property, we would 

need to match the environmental attributes with household sales. In this study we assume 

only when the hemlock stands locate within certain distance of households, they will 

affect the property value. We select three groups of household properties which are 

located around the hemlock stands within a distance of 0.1km, 0.5km or 1km.Then, there 

are four types of locations between household properties and hemlock stands (Figure 2). 

In case A, the buffer only intersects with sampled hemlock stands. In case B, the buffer 

intersects with both the sampled and non-sampled hemlock stands. In case C, the buffer 

intersects only with the non-sampled hemlock stands; we do not have the hemlock 

damage information. In case D, the buffer does not intersect with any hemlock stands; 

these properties are assumed to not be affected by the HWA infestation.  

Based on the sampled data, we only have the full hemlock damage information 

for case A. However, as the number of household properties which are only influenced by 

sampled hemlock stands is small, it may not be representative of the whole study area. To 

make the maximum use of household sale data, we would want to interpolate the 
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environmental damage to the whole study area and match them with the sales data. In our 

case, using interpolated hemlock damage data, we would be able to enlarge our economic 

analysis to all the household sales which are influenced by HWA infestation (case A, B 

and C in Figure 2).  

DataQuick provides the dataset which contains all the house attributes and sales 

price during the study years (2007-2011). Lot size, living area, number of bath rooms, 

number of bed rooms, house age and distance to highway are included as housing 

characteristics. We also introduce dummy variable to indicate whether the house has air 

conditioning and fireplace. In Appendix Table A, we list the summary statistics of 

housing characteristic variables for properties both located nearby the sampled hemlock 

stands and all the hemlock stands (<0.1km). Comparing the summary statistics, we can 

see most of the housing characteristics are similar between the two groups except that the 

households near the sampled stands are also located near to highway and developed area. 

These differences could introduce different economic impacts from the HWA damages. 

Land cover in the neighborhood can also influence the household property value 

(Irwin 2002; Patterson and Boyle 2002). We constructed land cover variables based on 

National Land Cover Data (2006) using raster of 30m2 pixels. The six different types of 

land cover variables constructed are water, open space, high developed district, forest, 

agricultural land and wetland. They are calculated as the percentage of the buffer area 

around household property which is covered by each land type, while the size of the 

buffer is respectively 0.1km, 0.5km, or 1km corresponding to each group.  
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4. Spatial Interpolation 

4.1 Interpolation Methods 

We first employ the geo-statistic interpolation methodologies to scale up our 

hedonic analysis and predict the spatial distribution of forest damage data; they are based 

on the assumption that the values should be more similar when the points are near to each 

other. Inverse distance weighting (IDW), Spline and kriging are three interpolation 

methodologies commonly applied in the forestry studies; they are readily available in the 

geo-statistical wizard of Geostatistical Analyst Tool in ARCGIS 10.1. 

Inverse distance weighting (IDW) assigns values of hemlock damages to 

unknown points with a weighted average of the values observed at the locations in the 

neighbor. It gives greater weights to points closest to the prediction location, and the 

weights diminish as a function of distance (Shepard 1968). An interpolated value 𝑢 at 

non-sampled point 𝑥 using IDW is: 

                                 𝑢(𝑥) = ∑ 𝑤𝑖(𝑥)𝑢𝑖𝑖
∑ 𝑤𝑖𝑖 (𝑥)

                                                      (1) 

Here 𝑢𝑖 denotes the hemlock damages at sampled point 𝑥𝑖, 𝑖 = 0,1,⋯𝑁. 𝑤𝑖 = 1
𝑑𝑖𝑝

 

while 𝑑𝑖 is a given distance from the known point 𝑥𝑖  to the unknown point 𝑥. 𝑝 is the 

power parameter which is set equal to 1 here. 

The Spline tool estimates values of non-sampled points using a mathematical 

function that minimizes overall surface curvature, resulting in a smooth surface that 

passes exactly through the input points (Franke 1982; Mitas and Mitasova 1988). The 

kernel parameter and kernel function employed will determine the extent to which any 
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given point influences the fitted surface and specify the smoothness of the surface. They 

are calculated by minimizing the root mean square error during cross validation. 

Kriging predicts the value at a non-sampled location using the weighted average 

of the known values of its neighbors while the weights are determined by a 

semivariogram model of spatial autocorrelation (Isaaks and Srivastava 1989; Cressie 

1993; Goovaerts 1997; Schabenberger and Gotway 2005). The semivariance (Stein 1999) 

is  

              𝜌(ℎ) = 1
2𝑛

 ∑ (𝑢(𝑥𝑖) − 𝑢(𝑥𝑖 + ℎ))2𝑛
𝑖=1                                              (2)        

where 𝑥𝑖 represents any sampled hemlock stand, (𝑥𝑖 + ℎ) is a sampled stand distance ℎ 

from 𝑥𝑖 , 𝑢(∙)  is the observational value at the sampled location. Based on the 

semivariance, the parameters of function form, range, nugget effect and sill are estimated 

which define the empirical semivariogram model (Cressie 1985; Chilès and Delfiner 

1999).  

Here the spatial correlation is assumed as isotropic over the study area, i.e. that 

the spatial correlation is only depending on the distance between two points but not the 

direction of their separation. As the infestation of HWA has the potential to move from 

southwest to northeast, we make trend analysis at first. A second-order polynomial trend 

is removed at first if there exists significant trend over space, while the kriging analysis is 

performed on the residuals. Ordinary kriging interpolation methods are applied.  

4.2 Kriging Adjustment Methods 
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 Cross validation is used to evaluate which model provides the best predictions. 

Cross validation is performed by removing one point from data set and then predicting its 

value using the data at the rest locations. Comparing the predicted value to the observed 

value across all the points, we can obtain the measurements for evaluation. The cross 

validation results for live basal area based on Kriging interpolation method is shown in 

Figure 33. For a good fit, the points in the cross validation results (Figure 3) should 

scattered around 45 degree line. However, these spatial interpolation estimates present a 

serious drawback well known by geo-statisticians as the smoothing effect. This prediction 

error may exacerbate the computation of HWA damages in terms of maximum live basal 

area. Similarly for vigor, with the small frequency of observing severely damaged stands, 

there are relatively large prediction errors for stands with low vigor. In our study, from 

year 2007 to year 2011, with the increased damages from HWA, these smoothing effects 

of live basal area increase over years. 

Approaches have been investigated to make corrections of the smoothing effects 

from ordinary Kriging based on cross validation results. 4Olea and Pawlowsky (1996) 

have proposed a procedure called compensated kriging, which is carried out in four steps. 

(1) Make an estimation from ordinary Kriging to get the best fitted models. (2) Use the 

cross-validation results to run a regression of the predicted value on the true values. Z*(x) 

is the predicted value and Z(x) is the true value. The regression provides the values of the 

slope a and the intercept b. The regression equation would be Z*(x) = aZ(x) + b; (3) 

Employ Equation (3) to make adjustment of the predicted value Z*(x) 

                                                           
3 The cross validation results from Spline and IDW are similar with Kriging.  
4 Correction approaches are conducted based on ordinary kriging interpolation method as it not only gives 
expected mean but also variance at each location. 
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                𝑍𝑐∗(𝑥) = 𝑍∗(𝑥) − 𝜀2(𝑥)
𝜖𝑚𝑚𝑚
2 (𝑍∗(𝑥) − 𝑍∗(𝑥)−𝑏

𝑎
)                                       (3) 

𝜀2(𝑥) is the kriging estimation variance and 𝜖𝑚𝑚𝑚2  is the maximum value of the 

kriging estimation variance.  𝑍𝑐∗(𝑥) is the adjusted value. 

 (4) Examine the extreme values for Zc*(x) and compare them with the extreme 

values of the sample, in case that straight compensation may overdo the job.5 

Another approach is introduced by Yamamoto (2005). It also included four steps. 

(1) Run the cross-validation procedure in order to achieve for each data point the 

interpolation standard deviation 𝜀 and the true error. These variables are then transformed 

into another variable named number of interpolation standard deviations as follows: 

𝑁𝑆0 = −TrueError 
𝜀 

 ; (2) Run the ordinary kriging procedure to determine the number of 

interpolation standard deviations (𝑁𝑆0 ) at all locations to be corrected. (3). Run the 

ordinary kriging procedure to make estimates 𝑍∗(𝑥)  and the interpolation standard 

deviation (𝜀) at all locations; (4) Correct the ordinary kriging estimates as follows:  

              𝑍𝑐∗(𝑥)  = 𝑍∗(𝑥)+𝑁𝑆0 (𝑥)  *𝜀                                                       (4) 

The correction provided by expression (4) must be checked if the corrected value 

is within the data range of the subset of neighboring points. 6 

In our study, we employed both correction methods to adjust the Kriging 

interpolation results and check how they will influence the estimation of economic 

models. 

                                                           
5 For a detailed introduction of method, see Olea and Pawlowsky (1996). 
6 For a detailed introduction of method, see Yamamoto (1996). 
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5. Model Specification 

Live basal area and vigor are two key hemlock damage variables that have the 

potential to induce economic losses for the residential property nearby. Based on the 

interpolation methodologies described above (IDW, Spline and Kriging), we interpolated 

both hemlock live basal area and vigor separately for each year over the whole study area. 

Both the live basal area and vigor are interpolated directly as continuous variables. For 

the kriging method, we also make adjustments of the predicted value based on Olea and 

Pawlowsky (1996) and Yamamoto (2005). 

The value of live basal area and vigor for the 6,126 hemlock stands are then 

extracted from the interpolated space based on 30m ×30m grid. They are calculated as 

the mean of interpolated value for covered spatial area. Then for each household property, 

the measurements for live basal area and vigor are calculated by the mean of the hemlock 

stands which intersects with the buffers (0.1km, 0.5km, or 1km) around the household 

properties. For 2008 and 2010, they are calculated as the mean value of the previous year 

and following year. Live basal area (𝑙𝑙𝑙𝑖𝑖) and the interaction between live basal area and 

vigor (𝑙𝑙𝑙𝑖𝑖 ∗ 𝑣𝑣𝑣𝑣𝑣𝑖𝑖) are included in the model as the measurements for environmental 

attributes. 

For the traditional hedonic model, the household property value would be affected 

by different attributes, house-specific characteristics 𝑍𝑖, land cover characteristics 𝐿𝑖, and 

environmental characteristics 𝐸𝑖𝑖  ( 𝑙𝑙𝑙𝑖𝑖  and 𝑙𝑙𝑙𝑖𝑖 ∗ 𝑣𝑣𝑣𝑣𝑣𝑖𝑖 ). The fixed effect panel 

models are commonly used to handle the problem with other spatially correlated omitted 

variables as Equation (5). 
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    ln 𝑃𝑖𝑖 = 𝑍𝑖𝛼 + +𝐿𝑖𝛽 + 𝑙𝑏𝑏𝑖𝑖𝛾 + 𝑙𝑙𝑙𝑖𝑖 ∗ 𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝜃 + 𝜏𝑡 + 𝜔𝑗 + 𝜀𝑖𝑖                   (5) 

Here 𝑃𝑖𝑖 is the sale price for property 𝑖 at time 𝑡 in the semi-logarithmic function form. 𝜏𝑡 

is the time effect, and 𝜔𝑗 is the spatial effect. We only used the most recent sale for each 

household property in the estimation equation to avoid autocorrelation between 

observations for the same property. 

The house-specific characteristics 𝑍𝑖 include lot size, living area, number of bath 

rooms, number of bed rooms, house age, air conditioning, fireplace and distance to 

highway. The land cover characteristics 𝐿𝑖 include the percentage of buffer area covered 

by water, open space, high developed district, forest, agricultural land and wetland. The 

time effect is set as dummy variables from 2007 to 2011, while the spatial fixed effect is 

set based on zip code7.  

According to the hedonic estimation result in equation (5), the marginal effect of 

live basal area on property value can be calculated as in equation (6), which depends on 

the value of hemlock vigor.       

                                        𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 = 𝛾 + 𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝜃                                                                  (6) 

One concern with the traditional hedonic model is that the property value is 

affected by lots of characteristics. When the missing attributes in the error term are 

correlated with the attribute variables in the model, the coefficients could be biased. One 

way to deal with this problem is to conduct a quasi-experiment design using repeated sale 

model. The repeated sale method starts with the assumption that the change of price value 

                                                           
7 The number of the spatial fixed effect variables varies with the changes of buffer sizes.  
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is only introduced by the change of household characteristics. Then by taking difference 

between two sales from one property, the effects from fixed attributes would be cancelled 

out, which are less susceptible to omitted variable bias (Kuminoff et al. 2010). Then the 

model turns to be 

ln 𝑃𝑖𝑖 − ln𝑃𝑖𝑖−1 = (𝑙𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑙𝑖𝑡−1)𝛾 + (𝑙𝑙𝑙𝑖𝑖 ∗ 𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑙𝑙𝑙𝑖𝑖−1 ∗ 𝑣𝑣𝑣𝑣𝑣𝑖𝑖−1)𝜃 + (𝜏𝑡 −

𝜏𝑡−1) + 𝜔𝑗 + 𝜀𝑖𝑖                                                                                                                       (7) 

Here 𝜔𝑗 are employed to capture the spatial effect.  𝜏𝑡 is the year dummy variable of the 

most recent sale, while 𝜏𝑡−1 is the year dummy variable of the previous sale.  

6. Results 

6.1 Spatial Interpolation 

Live basal area and vigor are separately interpolated over space for the sample 

years of 2007, 2009 and 2011. The interpolated live basal area over the study area for 

each year based on kriging is shown in Figure 4. Through time we see the live basal area 

has declined. In year 2007, the mean of interpolated live basal area is about 40 m2/ha. In 

year 2011, the mean of interpolated live basal area over all the study area is about 15 

m2/ha.  

The interpolated probability of healthy hemlock stands (2007-2011) based on 

kriging is shown in Figure 5. The change of the hemlock vigor follows the same pattern 

as live basal area. Overall, the data reveals the HWA infestation in 2007 was primarily in 

southern Connecticut and the hemlocks in Massachusetts were generally healthy. By 

2011, a period of four years, the HWA infestation had spread substantially into 

Massachusetts.     
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The summary descriptive statistics of interpolated live basal area, vigor and their 

interaction terms in the hedonic model (<0.1km) are shown in Appendix Table B. 

Comparing three interpolation methods, we can see the descriptive statistics are similar 

across three interpolation methods. The predicted standard deviations turn to be relatively 

smaller than the sampled data. After the adjustment based on the cross validation results, 

the descriptive statistics of live basal area, vigor and their interaction terms got changed 

and the predicted standard deviation got larger. 

6.2 Basic Estimation Results 

We estimated the economic impact from HWA only based on sampled data, 

including 0.1km, 0.5km, and 1km buffer (Table 2). Because of the small sample problem, 

we could only estimate the traditional hedonic model. From the results, we can see that 

0.1 km buffer shows out the significance at 10% level for both the coefficients of live 

basal area and its interaction with vigor. If vigor=1 (seriously damaged hemlock stand), 

when the live basal area increases by 1 m2/ha the house price will decrease by 0.38%. If 

vigor=4 (healthy hemlock stand), when the live basal area increases by 1 m2/ha the house 

price will increase by 0.23% (Table 5). The coefficients of live basal area and its 

interaction with vigor are not significant in 0.5km buffer. Although they are significant in 

1km buffer, their signs are objective with the intuition.  

We first employed the Kriging interpolation methods to predict the hemlock 

damage variable for all the hemlock stands. As the spatial interpolation methods enlarged 

our observation sample set, we can employ both the hedonic model and the repeated sale 

model. Although the results for hedonic model are significant at all three buffer size, only 

0.1 km buffer shows the significant results in the repeat sale model (Table 2). Compared 
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with the repeat sale estimation results, the significances in the hedonic model with buffer 

0.5km and 1km could be caused by the correlation with the missing variable in the error 

term. 

The magnitudes of the coefficients are decreasing with the increase of the buffer 

size. The magnitudes of the coefficients based on hedonic model are similar with the 

sampled stands, while they are much larger in the repeat sale model for 0.1km buffer.  

Based on the repeat sale model of 0.1km buffer, if vigor=1 (seriously damaged hemlock 

stand), when the live basal area increases by 1 m2/ha the house price will decrease by 

4.32 %. If vigor=4 (healthy hemlock stand), when the live basal area increases by 1 m2/ha 

the house price will increase by 1.13% (Table 5). 

To check the reason for the differences between hedonic model and repeat sale 

model results, we estimate the hedonic model based only on the repeat sale sample (Table 

2). The hedonic models with repeat sale sample show significance at both 0.1km buffer 

and 0.5 km buffer. The differences between hedonic model and repeat sale model are not 

just introduced by different sample. Different model specification is also a major factor. 

 
6.3 Interpolation Robustness Analysis 
 

We also employed Spline and IDW methods to make interpolations and compared 

their results with the Kriging (Table 3). In the hedonic model (0.1 km buffer), the 

coefficients of the interaction term is significant at 5% level for IDW methods, while 

none is significant for the spline interpolation methods. In the repeat sale model (0.1 km 

buffer), the coefficients of live basal area and its interaction are both significant. The 
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magnitude of the coefficients are similar between IDW and Spline method, however they 

are smaller compared with the Kriging interpolation method.  

We have also checked the robustness of the estimation results after we conducted 

the adjustment of kriging interpolation methods based on Olea & Pawlowsky (1996) and 

Yamamoto (2005). Based on the adjustment method of Olea & Pawlowsky (1996), the 

coefficients of live basal area and its interaction in the hedonic model are still significant 

at 5% level. Based on the adjustment method of Yamamoto (2005), the coefficients are 

no longer significant. However, in the repeat sale model, both adjustment methods show 

significant estimation results at 1% level. And their magnitudes are relatively similar and 

even smaller with the IDW and Spline interpolation methods. 

We estimate the marginal impact of live basal area based on the adjustment 

method of Yamamoto (2005). If vigor=1 (seriously damaged hemlock stand), when the 

live basal area increases by 1 m2/ha the house price will decrease by 2.24%. If vigor=4 

(healthy hemlock stand), when the live basal area increases by 1 m2/ha the house price 

will increase by 1.15% (Table 5). 

7. Conclusion and Discussion 

The results of this study indicate that HWA has caused dramatic damages to 

hemlock stands in central Connecticut and central Massachusetts during the period 2007-

2011. This landscape change causes the decrease of the sales price for properties residing 

in the study area. The repeat sale model give relatively consistent estimation results that 

the hemlock damage caused by HWA infestation will decrease the value of residential 

properties which locate inside 0.1km buffer area.  
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Because of the small sample size, we can see that the inference based only on the 

sampled stands may lose property sale information. And we could not correctly estimate 

the effect of hemlock damage using repeat sale model. Spatial interpolation methods 

provide us useful tools to enlarge the scale of our analysis and lead to consistent 

inference. After spatial interpolation (Kriging, Spline and IDW), we could utilize quasi-

experimental design method to avoid the missing variable problem. The results show the 

robustness in the repeat sale model. 

However, there will exist measurement errors when we used the prediction results 

from spatial interpolation rather than the true value in hedonic model analysis. We 

attempt to adjust the smoothing effects of Kriging by two approaches proposed by Olea 

& Pawlowsky (1996) and Yamamoto (2005). These adjustments are supposed to improve 

the accuracy of HWA damage variables in the hedonic model estimation. These 

adjustments changed the magnitudes of the coefficients while the significance levels keep 

the same for the repeat sale model. Adjustments reduce repeat sale effects and bring it 

close to IDW and spline. These also imply the repeat sale provide the robust estimation 

results compared with the tradition hedonic model. 

The implicit price changed significantly from hedonic model to repeat sale model. 

Moving from sampled to interpolated estimation for hedonic model has minimum effects. 

Moving from sampled hedonic model to interpolated estimation for repeat sale model has 

big effects. This is due to repeat sales rather than the sample of repeat sales.  

In our analysis, the live basal area and vigor were measured at specific locations 

which did not match with the property sale data. This spatial misalignment would result 
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in similar problems as a set of environmental epidemiology studies (Madsen et al. 2008, 

Gryparis et al. 2009, Szpiro et al. 2010). The measurement error of hemlock health 

variables from spatial interpolation might cause the estimates of their coefficients and the 

standard errors in the hedonic model to be biased. Several studies have investigated this 

spatial misalignment issue and proposed different approaches to adjust the estimation 

bias. Madsen et al. (2008) suggested adjusted krige and regress approach which 

employed a generalized least square estimator to correct the correlated error structure. 

Gryparis et al. (2009) pointed out the Berkson-type error from spatial smoothing. They 

compared different estimation methods and suggested that both the out-of-sample 

regression calibration and Bayesian models provided good performance. Szpiro et al. 

(2008, 2010) proposed three different bootstrap approaches that account for both the 

classic prediction error and the Berkson error.  

However, in all the studies proposed above there is only one predicted covariate 

which would bring extra uncertainty in the model estimation. In our hedonic model, we 

included both predicted covariates of live basal area and its interaction with vigor in the 

estimation model, and both hemlock health variables are interpolated separately for each 

year. These data structure made the covariance structure more complex to make 

adjustment of the additional spatial correlation. It is hard to check how the predicted 

covariates of hemlock health variable will impact the estimation results. Besides, the 

previous mentioned studies addressed the point to point spatial misalignment issue while 

our study is under point to area spatial misalignment settings. The household property 

values are assumed to be associated with the hemlock health of the nearby forest stands 

which are the average of the spatial interpolated value over the stand area. In the point to 
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area settings, Lopiano et al. (2010) and Young et al. (2012) compared the estimation 

results from directly using the predicted covariates with the adjustment methods proposed 

by Madsen et al. (2008) and Szpiro et al. (2009). They found that the coefficients of the 

interpolated covariates are expected to be unbiased in the point to area misalignment 

setting. And the standard errors of the covariate coefficients using the basic methods 

performs well in certain cases, although it is not clear yet whether this would be the 

general case. Besides, the trend of the spatial interpolation over study area could also 

impact the biasness and standard errors of the covariate coefficients (Young et al. 2012). 

The coefficients of the predicted covariates would not change dramatically, while the 

variability of the coefficients will increase. Therefore, in this paper we just employed the 

interpolated value without further adjustment of the complex covariance error structure. 

Future researches will need to show its performance. 

Our results show that the hemlock damages will decrease the property value about 

3% in 0.1km buffer. Holmes et al. (2010b) estimated that hemlock defoliation and 

mortality resulted in a 1-1.6% decrease in residential property values of parcels that had 

hemlocks on the property. The estimated marginal effect for vigor is relatively large here 

compared with Holmes et al. (2010b). One reason could be that we employed different 

formation of hemlock damage measurements here. As the interaction of vigor and live 

basal area is introduced into the model, their effects on the property price are 

interdependent. Another reason could be that the property markets in Connecticut and 

Massachusetts were still in adjustments to the hemlock damage while the property market 

of New Jersey was in different market equilibrium.  
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According to the impact of HWA on residential property values, the aggregate 

economic losses have likely rapidly accelerated in the study area during the past several 

years. It can cause even larger damages when the infestation of HWA moves further into 

northern area where there are more hemlock forests. Although forest management tools 

are not currently available to either slow the spread or to protect naturally regenerated 

hemlock forests from HWA, the economic benefits of developing such tools could be 

substantial. Slowing the advance of HWA into residential forests could convey 

substantial benefits to homeowners, and may substantially exceed the cost of such 

programs. Protecting or delaying the onset of HWA in such areas may be a smart 

investment of public and private funds.   
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  a The sample size decreased over years as some hemlock stands disappeared or were not allowed for 
access again. 
 b For vigor classes: 1 = 76 – 99% foliar loss, 2= 51-75% foliar loss, 3 = 26-50% foliar loss and 4 = 0 – 25% 
foliar loss. 

 
  

Table 1.  Live Basal Area and Vigor for Sampled Hemlock Stands 
 

 Year 2007 2009 2011 
Live Basal Area                    
(𝑚2 ℎ𝑎⁄ ) 

Mean 38.23 27.83 15.31 
SD 27.59 16.29 11.89 

 Min 0 0 0 
 Max 125.45 73.34 54.04 
 Na 140 138 122 
Vigor Classb 1 8 11 9 
(stand count) 2 18 19 23 
 3 33 37 44 
 4 82 71 47 
 N 141 138 123 
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Note: *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant 
at the 10% level; standard deviations in parentheses. 

  

 Table 2.  Estimation Results Based on Sampled Data and Kriging Interpolated Data 
 <0.1km <0.5km <1km 

Sample Data 
Hedonic Model    
lba (×10-3) -5.856* 

(3.442) 
1.699 

(2.250) 
0.217* 
(1.291) 

lba*vigor (×10-3) 2.039* 
(1.042) 

-0.459 
(0.745) 

-0.649* 
(0.373) 

N 148 484 1,655 
    

Kriging Results 
Hedonic Model    
lba (×10-3) -8.396** 

(4.026) 
-5.825** 
(2.327) 

-2.935* 
(1.702) 

lba*vigor (×10-3) 2.174** 
(0.914) 

1.591*** 
(0.493) 

0.831** 
(0.367) 

N 2,762 13,087 23,267 
    
Repeat-sale Model    
lba (×10-3) -61.306*** 

(15.767) 
-9.359 
(8.399) 

0.354 
(6.576) 

lba*vigor (×10-3) 18.144*** 
(5.022) 

1.968 
(2.224) 

-1.028 
(1.654) 

N 180   818 1,425 
    

Hedonic Model with Repeat-sale Sample   
lba (×10-3) -7.558 

(21.876) 
-19.640*** 

(6.453) 
-3.632 
(5.126) 

lba*vigor (×10-3) 9.046* 
(4.657) 

4.984*** 
(1.538) 

1.275 
(1.444) 

N 180 818 1,425 
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Note: a. *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant 
at the 10% level; Standard deviations in parentheses. 

b. The results listed here is for 0.1km buffer; 0.5 and 1km buffers excluded because they are not significant 
in the estimation results of repeat sale models. 

 

 

  

Table 3.  Estimation Results Based on Different Interpolation Methods 
 Kriging IDW Spline 
Hedonic Model    

lba (×10-3) -8.396** 
(4.026) 

-4.032 
(2.858) 

-3.364 
(2.701) 

lba*vigor (×10-3) 2.174** 
(0.914) 

1.232** 
(0.722) 

1.064 
(0.683) 

N 2,762 2,762 2,762 
    

Repeat-sale Model    

lba (×10-3) -61.306*** 
(15.767) 

-39.03* 
(21.651) 

-39.276** 
(19.383) 

lba*vigor (×10-3) 18.144*** 
(5.022) 

13.14** 
(5.915) 

13.334** 
(5.500) 

N 180 180 180 
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Note: a. *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant 
at the 10% level; Standard deviations in parentheses. 

b. The results listed here is for 0.1km buffer; 0.5 and 1km buffers excluded because they are not significant 
in the estimation results of repeat sale models. 

  

Table 4.  Estimation Results Based on Cross Validation Adjustment  
 Kriging Olea & Pawlowsky 

Adjustment 
Yamamoto 
Adjustment 

Hedonic Model    

lba (×10-3) -8.396** 
(0.022) 

-5.652** 
(2.426) 

-2.625 
(2.186) 

lba*vigor (×10-3) 2.174*** 
(0.009) 

1.374** 
(0.543) 

0.802 
(0.586) 

N 2,762 2,762 2,762 
    

Repeat-Sale Model    

lba (×10-3) -61.306*** 
(15.767) 

-35.782*** 
(11.348) 

-33.654*** 
(11.414) 

lba*vigor (×10-3) 18.144*** 
(5.022) 

9.735*** 
(3.412) 

11.285*** 
(4.010) 

N 180 180 180 



34 
 

 

Note: a. *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant 
at the 10% level; Standard deviations in parentheses. 

b. The results listed here is for 0.1km buffer 

 

  

 Table 5.  Implicit Price for Live Basal Area  
 Sampled Model 

(hedonic model) 
Kriging (hedonic 
model with repeat 

sale sample) 

Kriging 
(repeated sale) 

Adjustment 
Yamamoto 

(repeated sale) 
Vigor=1  -0.38% 

(0.2515) 
0.149% 
(1.794) 

-4.32% 
(1.171) 

-2.24% 
(0.777) 

 
Vigor=4  0.23% 

(0.1671) 
2.863% 
(1.060) 

1.13% 
(1.026) 

1.15% 
(0.659) 

n 148 180 180 180 
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Figure 1. Hemlock Stands in the Study Area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The blue line represents the border of the counties in Connecticut; while the black line represents the 
border of the counties in Massachusetts.  
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Figure 2. Locations between Household Properties and Hemlock Stands 

 

 
Note: H represents household property; S represents sampled hemlock stand; US represents non-sampled 
hemlock stand. 
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Figure 3. Cross Validation Results for live Basal Area (𝒎𝟐 𝒉𝒉⁄ ) by Kriging 
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  Figure 4. Interpolated Live Basal Area ( 𝒎𝟐 𝒉𝒉⁄ ) by Kriging in the Study Area 
(2007-2011) 
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Figure 5. Interpolated Vigor by Kriging in the Study Area (2007-2011) 
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Appendix 

 

Table A.  Descriptive Statistics of Housing Characteristics Variables  
 

 Hedonic Model Repeat Sale Model 
 Mean SD Mean SD 

Sampled Model   
House price ($2003) 384,246 250,960   
Living area (ft2) 2,289 910   
Lot size (ft2) 86,936 133,246   
Baths 2.00 0.77   
Bedrooms 3.40 0.88   
Age 1,966 49   
Air conditioning (%) 0.39 0.49   
Fireplace (%) 0.54 0.50   
Distance to highway (m) 937 845   
Water (%) 0.29 2.46   
Open space (%) 23.58 21.58   
Developed area (%) 0.41 3.22   
Forest (%) 52.06 30.41   
Agricultural (%) 2.29 8.71   
Wetland (%) 1.80 6.61   
n 148 148   
Interpolated Model     
House price ($2003) 320,188 315,590 330,318 343,568 
Living area (ft2) 1,914 848 1,865 870 
Lot size (ft2) 93,244 213,209 80,985 148,524 
Baths 1.79 0.76 1.76 0.70 
Bedrooms 3.17 0.83 3.15 0.79 
Age 1,970 41 1,969 40 
Air conditioning (%) 0.31 0.46 0.28 0.45 
Fireplace (%) 0.48 0.50 0.42 0.49 
Distance to highway (m) 1,068 1,068 1,017 1,156 
Water (%) 0.54 3.42 0.68 3.40 
Open space (%) 22.12 19.54 22.16 18.44 
Developed area (%) 0.08 1.24 0.002 0.03 
Forest (%) 47.47 29.87 47.66 29.25 
Agricultural (%) 4.92 12.87 4.75 11.59 
Wetland (%) 2.72 8.40 1.83 6.11 
n 2,762 2,762 180 180 

Note: The samples are based on 0.1km buffer.  
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Table B.  Descriptive Statistics of Hemlock Health Variables in Hedonic Analysis 
 

    
 Mean SD Min Max 

Sampled Data (n=148)   
Live Basal Area (𝑚2 ℎ𝑎⁄ ) 22.886 18.435 0 98.43 
Vigor 2.723 0.995 1 4 
Lba*vigor 65.542 55.910 0 295.29 
     

Interpolated Data 
Kriging (n=2,762)     
Live Basal Area (𝑚2 ℎ𝑎⁄ ) 30.247 12.789 5.797 79.57546 
Vigor 3.378 0.545 1.369 4.125 
Lba*vigor 106.344 55.364 13.121 314.147 
     
IDW (n=2,762)     
Live Basal Area (𝑚2 ℎ𝑎⁄ ) 30.293 13.020 3.013 87.592 
Vigor 3.366 0.582 1.127   4 
Lba*vigor 106.299 55.483 5.973 346.141 
     
Spline (n=2,762)     
Live Basal Area (𝑚2 ℎ𝑎⁄ ) 30.462 13.253 3.771 83.438 
Vigor 3.376 0.577 1.071 4.589 
Lba*vigor 107.091 56.493 6.479 329.149 
     

Interpolated Data with Cross Validation Adjustment  
Olea & Pawlowsky Adjustment (n=2,762) 
Live Basal Area (𝑚2 ℎ𝑎⁄ ) 32.653 19.960 0 137.444 
Vigor 3.430 0.692 0.907 4.521 
Lba*vigor 120.380 87.252 0 585.272 
     
Yamamoto Adjustment (n=2,762)     
Live Basal Area (𝑚2 ℎ𝑎⁄ ) 28.830 15.542 0.221 109.589 
Vigor 3.278 0.550 1.192 4 
Lba*vigor 98.750 62.164 0.506 419.330 
Note: The samples are based on hedonic model in 0.1km buffer. 
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