Climate in relation to other policies

The impact of inertia and capital accumulation

Stéphane Hallegatte

The World Bank
Sustainable Development Network
Office of the Chief Economist
April 13, 2013

With Adrien Vogt-Schilb (CIRED, Paris, France) and Guy Meunier (INRA-ALISS, Paris, France)

There are two issues

- The world has multiple market and government failures
 - Can environmental policies help correct nonenvironmental failures? (Assuming they cannot be solved before hand)
 - Can one instrument help with two objectives?
- Most countries have implemented multiple (overlapping) policies to mitigate climate change (e.g., EU-ETS + feed-in tariffs)
 - Is a carbon price sufficient, or do we need additional (sector scale) policies? (overlapping policies)
 - Can one objective requires two instruments?

MACCs report information on abatement costs and potentials for a set of mitigation activities

source: McKinsey (2009)

MACCs report information on abatement costs and potentials for a set of mitigation activities

Illustrative MACC with two activities

"Cheap and quick" can be switching from coal to gas "Deep and slow" can be retrofitting buildings

With an objective in 2050.....

- 1. If the optimal abatement from building retrofit in 2050 is 2Gt
- 2. Retrofitting so many buildings takes time we need to start now
- 3. Cheaper but faster-to-implement options required in 2050 may enter later

How to decentralize such a strategy?

Is a carbon price sufficient? Or do we need a carbon price for "quick" changes, and additional policies for high-inertia sectors (e.g., urban planning, innovation, building retrofit)?

An approach based on marginal abatement costs

The social planer copes with a carbon budget by choosing, at each point in time, a level of abatement on the marginal cost curve

The optimal strategy is to equalize Marginal Abatement Costs (MAC) across sectors

This model leads to unrealistic pathways at the sector level

All buildings should be retrofitted in 3 years (?)

The building sector is the cheapest to decarbonize

In the classical framework, being cheap amounts to being fast

An approach based on green capital accumulation

Abatement $a_i(t)$ is **path dependent**, the social planner chooses (and pays for) **investments in green capital** $x_i(t)$

Abatement is obtained through investment, convex costs bear on the abatement pace x_i (not the abatement level a_i)

x_i could be the **pace** in vehicles/year at which zeroemission vehicles are built and introduced in the fleet

- $-a_i$ would be the share of ZEV in the **fleet**
- –producing twice many vehicles costs more than twice more : $c_i'(x_i) \uparrow$

 $\mathbf{x_i}$ could be the number of buildings retrofitted **per year**

- $-a_i$ would be their share in the **stock**
- more buildings per year requires to hire skilled workers: $\mathbf{c_i'(x_i)} \uparrow$

We also introduce a maximum amount of abatement that can be achieved in each sector

Different sectors have different capital lifetimes, hence different depreciation rates δ_i

	Typical lifetime	δ
	years	%/yr
Energy	40	2.5
Transport	15	6.7
Buildings	60	1.7
Industry	25	4.0
Agriculture	20	5.0
Forestry	120	0.8
Waste	30	3.3

We can define MACs: the marginal levelized abatement costs (per abated ton) (MLAC)

$$\forall x_{i,t}, \quad \ell_{i,t} = (r + \delta_i) \, c_i{}'(x_{i,t})$$

MLACs $l_{i,t}$ are marginal investment costs c'_i annualized at the rate $(r+\delta_i)$.

Optimal marginal efforts are now different across sectors

Noting T_i the dates when the sectoral potentials are reached, optimal MLACS read:

$$\ell_{i,t}^* = \underbrace{\mu e^{rt}}_{r} r \left(1 - e^{-\delta_i (T_i - t)}\right) + e^{-(r + \delta_i)(T_i - t)} (r + \delta_i) \, c_i' \left(\delta_i \bar{a}_i\right)$$
 Unique carbon price Depends on the sector i !

The swimming-pool-fence effect

The new **abatement** pathways are **smooth** and more **realistic**

Low carbon capital accumulation

What about the equi-marginality principle?

- To be equal across sectors, Marginal Abatement Costs need to be defined differently, using an accounting value.
- Jorgenson (1967): the marginal productivity of capital should not be equalized to investment costs, but to the implicit rental cost of capital (IRCC)
- We define the marginal implicit rental cost of capital (MIRCC):

$$\forall i, \ \forall t \leq T_i, \quad p_{i,t}^* = (r + \delta_i) \ c_i{'}(x_{i,t}^*) - \frac{dc_i{'}(x_{i,t}^*)}{dt} = \mu e^{rt}$$

 We can demonstrate that equalizing MIRCC to the carbon price is a necessary conditions, but is NOT a sufficient condition (there are an infinity of pathways that do so).

A green transition?

- With abatement cost functions, efforts to mitigate grow over time
- With low-carbon capital, it is optimal to invest massively now.

Conclusions

- We propose a new model that describes explicitly green capital deployment.
- 2. Using MACs in their usual definition (marginal levelized abatement cost):
 - MACs should **not** be equal to the carbon price
 - MACs should **not be equal across sectors**
 - Abatement efforts trigger a transition and are bell-shaped.
- 3. We can define a new MACs (different from common practice) so that MACs are equal across sector. But they cannot be used to decentralize abatement decisions.
- 4. There are several **sectoral or local mitigation policies** out there, e.g : EU-ETS, Green quotas, Fuel efficiency standards (CAFÉ), Feed-in tariffs, Urban plans

As far as they are related to green capital deployment, we find that they cannot be discarded based on the argument that they set **different marginal efforts in different sectors**