

RETHINKING THE EQUITY RISK PREMIUM

Edited by

P. Brett Hammond, Jr., Martin L. Leibowitz, and Laurence B. Siegel

The Equity Premium Puzzle Revisited

Rajnish Mehra

E.N. Basha Arizona Heritage Chair Professor of Finance and Economics, Arizona State University Research Associate, NBER

In the two and a half decades since "The Equity Premium: A Puzzle" (Mehra and Prescott 1985) was published, attempts to successfully account for the equity premium have become a major research impetus in finance and economics. In an effort to reconcile theory with observations, I will elaborate on the appropriateness of three crucial abstractions in that article. In particular, I will argue that our finding (i.e., the premium for bearing nondiversifiable aggregate risk is small) is not inconsistent with the average equity premium over the past 120 years.

The three abstractions that I address here are

- using T-bill prices as a proxy for the expected intertemporal marginal rate of substitution of consumption;
- ignoring the difference between borrowing and lending rates (a consequence of agent heterogeneity and costly intermediation);
- abstracting from life-cycle effects and borrowing constraints on the young. I examine each of these in detail below.

Using T-Bill Prices as a Proxy for the Expected Intertemporal Marginal Rate of Substitution of Consumption

An assumption implicit in Mehra and Prescott (1985) is that agents use both equity and the riskless asset to smooth consumption intertemporally. This assumption is a direct consequence of the first-order condition (see Equation 1) for the representative household in our model. It implies that agents save by optimally allocating resources between equity and riskless debt.

$$0 = E_t \left[\frac{U_c \left(c_{t+s} \right)}{U_c \left(c_t \right)} \left(r_{t,t+s}^e - r_{t,t+s}^d \right) \right]. \tag{1}$$

Author Note: This paper draws widely on my collaborations with George Constantinides, John Donaldson, and Edward Prescott. Quite independently of our joint work, they have made substantial contributions to the literature on the equity premium puzzle. Consequently, the views expressed in this paper do not necessarily reflect their views.

Equation 1 is the standard asset-pricing equation in macroeconomics and finance. $U_c(c_{t+s})$ is the marginal utility of consumption at time t+s; $r^e_{t,t+s}$ and $r^d_{t,t+s}$ are, respectively, the return on equity and the return on the riskless asset over the period t, t+s; and E_t is the expectation conditional on the agent's information set at time t.

If the results from the model are to be compared with data, it is crucial to identify the empirical counterpart of the riskless asset that is actually used by agents to smooth consumption. In Mehra and Prescott (1985), we used the highly liquid T-bill rate, corrected for expected inflation, as a proxy for this asset. But one might ask: Is it reasonable to assume that T-bills are an appropriate proxy for the riskless asset that agents use to save for retirement and smooth consumption? Do households actually hold T-bills to finance their retirement? Only if this question is empirically verified would it be reasonable to equate their expected marginal rate of substitution of consumption to the rate of return on T-bills.

This question cannot be answered in the abstract without reference to the asset holdings of households, so a natural next step is to examine the assets held by households. Table 1 details these holdings for U.S. households. The four big asset-holding categories of households are tangible assets, pension and life insurance holdings, equity (both corporate and noncorporate), and debt assets.

Table 1. Household Assets and Liabilities as a Fraction/
Multiple of GDP

(average of 2000 and 2005)

Assets (GDP)		Liabilities (GDP)	
Asset	GDP (×)	Liability	GDP (×)
Tangible household	1.65	Liabilities	0.7
Corporate equity	0.85	Net worth	4.15
Noncorporate equity	0.5		
Pension and life insurance reserves	1.0		
Debt assets	0.85		
Total	4.85		4.85

In 2000, privately held government debt was only 0.30 times GDP, a third of which was held by foreigners. The amount of interest-bearing government debt with maturity less than a year was only 0.085 times GDP, which is a small fraction of total household net worth. Virtually no T-bills are directly owned by households. Approximately one-third of the T-bills outstanding are held by foreign central banks, and two-thirds are held by U.S. financial institutions.

¹See Table B-89, Economic Report of the President (2005).

Although large amounts of debt assets are held, most of these are in pension fund and life insurance reserves. Some are in demand deposits, for which free services are provided. Most government debt is held indirectly; a small fraction is held as savings bonds.

Thus, much of intertemporal saving is in debt assets, such as annuities and mortgage debt, held in retirement accounts and as pension fund reserves. Other assets, not T-bills, are typically held to finance consumption in retirement. Hence, T-bills and short-term debt are not reasonable empirical counterparts to the risk-free asset priced in Equation 1, and it would be inappropriate to equate the return on these assets to the expected marginal rate of substitution for an important group of agents.

An inflation-indexed, default-free bond portfolio with a duration similar to that of a well-diversified equity portfolio would be a reasonable proxy for a risk-free asset used for consumption smoothing.² For most of the 20th century, equity has had an implied duration of about 25 years, so a portfolio of TIPS (Treasury Inflation-Protected Securities) of a similar duration would be a reasonable proxy.

Because TIPS have only recently (1997) been introduced in U.S. capital markets, it is difficult to get accurate estimates of the mean return on this asset class. The average return for the 1997–2005 period is 3.7 percent. An alternative (though imperfect) proxy would be to use the returns on indexed mortgages guaranteed by Ginnie Mae (Government National Mortgage Association) or issued by Fannie Mae (Federal National Mortgage Association). I conjecture that if these indexed default-free securities are used as a benchmark, the equity premium will be closer to 4 percent than to the 6 percent equity premium relative to T-bills. By using a more appropriate benchmark for the riskless asset, I can account for 2 percentage points of the "equity premium."

Ignoring the Difference between Borrowing and Lending Rates

A major disadvantage of the homogeneous household construct is that it precludes the modeling of borrowing and lending among agents. In equilibrium, the shadow price of consumption at date t+1 in terms of consumption at date t is such that the amount of borrowing and lending is zero. However, there is a large amount of costly intermediated borrowing and lending between households, and as a consequence, borrowing rates exceed lending rates. When borrowing and lending rates differ, a question arises: Should the equity premium be measured relative to the riskless borrowing rate or the riskless lending rate?

²McGrattan and Prescott (2003) use long-term high-grade municipal bonds as a proxy for the riskless security.

To address this question, Mehra, Piguillem, and Prescott (2011) constructed a model that incorporates agent heterogeneity and costly financial intermediation. The resources used in intermediation (3.4 percent of GNP) and the amount intermediated (1.7 percent of GNP) imply that the average household borrowing rate is at least 2 percentage points higher than the average household lending rate. Relative to the level of the observed average rates of return on debt and equity securities, this spread is far from being insignificant and cannot be ignored when addressing the equity premium.

In this model,³ a subset of households both borrow money and hold equity. Consequently, a no-arbitrage condition is that the return on equity and the borrowing rate are equal (5 percent). The return on government debt, the household lending rate, is 3 percent. If I use the conventional definition of the equity premium—the return on a broad equity index less the return on government debt—I would erroneously conclude that in this model, the equity premium is 2 percent. The difference between the government borrowing rate and the return on equity is not an equity premium; it arises because of the wedge between borrowing and lending rates. Analogously, if borrowing and lending rates for equity investors differ, and they do in the U.S. economy, the equity premium should be measured relative to the investor borrowing rate rather than the investor lending rate (the government's borrowing rate). Measuring the premium relative to the government's borrowing rate artificially increases the premium for bearing aggregate risk by the difference between the investor's borrowing and lending rates.⁴ If such a correction is made to the benchmark discussed earlier, the "equity premium" is further reduced by 2 percentage points. Thus, I have accounted for 4 percentage points of the equity premium reported in Mehra and Prescott (1985) by factors other than aggregate risk.

Abstracting from Life-Cycle Effects and Borrowing Constraints on the Young

In Constantinides, Donaldson, and Mehra (2002), we examined the impact of life-cycle effects, such as variable labor income and borrowing constraints, on the equity premium. We illustrated these ideas in an overlapping-generations exchange economy in which consumers live for three periods. In the first period, a period of human capital acquisition, the consumer receives a relatively low endowment income. In the second period, the consumer is employed and receives wage income subject to large uncertainty. In the third period, the consumer retires and consumes the assets accumulated in the second period.

³There is no aggregate uncertainty in our model.

⁴For a detailed exposition of this and related issues, see Mehra and Prescott (2008).

In the article, we explored the implications of a borrowing constraint by deriving and contrasting the stationary equilibriums in two versions of the economy. In the *borrowing-constrained* version, the young are prohibited from borrowing and from selling equity short. The *borrowing-unconstrained* economy differs from the borrowing-constrained one only in that the borrowing constraint and the short-sale constraint are absent.

The attractiveness of equity as an asset depends on the correlation between consumption and equity income. Because the marginal utility of consumption varies inversely with consumption, equity will command a higher price (and consequently, a lower rate of return) if it pays off in states when consumption is high and vice versa.⁵

A key insight of ours in the article is that as the correlation of equity income with consumption changes over the life cycle of an individual, so does the attractiveness of equity as an asset. Consumption can be decomposed into the sum of wages and equity income. Young people looking forward at the start of their lives have uncertain future wage and equity income; furthermore, the correlation of equity income with consumption will not be particularly high as long as stock and wage income are not highly correlated. This is empirically the case, as documented by Davis and Willen (2000). Equity will, therefore, be a hedge against fluctuations in wages and a "desirable" asset to hold as far as the young are concerned.

The same asset (equity) has a very different characteristic for the middle-aged. Their wage uncertainty has largely been resolved. Their future retirement wage income is either zero or deterministic, and the innovations (fluctuations) in their consumption occur from fluctuations in equity income. At this stage of the life cycle, equity income is highly correlated with consumption. Consumption is high when equity income is high, and equity is no longer a hedge against fluctuations in consumption; hence, for this group, equity requires a higher rate of return.

The characteristics of equity as an asset, therefore, change depending on the predominant holder of the equity. Life-cycle considerations thus become crucial for asset pricing. If equity is a desirable asset for the marginal investor in the economy, then the observed equity premium will be low relative to an economy where the marginal investor finds it unattractive to hold equity. The deus ex machina is the stage in the life cycle of the marginal investor.

⁵This is precisely the reason why high-beta stocks in the simple capital asset pricing model framework have a high rate of return. In that model, the return on the market is a proxy for consumption. High-beta stocks pay off when the market return is high—that is, when marginal utility is low and, hence, their price is (relatively) low and their rate of return high.

We argued that the young, who should be holding equity in an economy without frictions, are effectively shut out of this market because of borrowing constraints. The young are characterized by low wages; ideally, they would like to smooth lifetime consumption by borrowing against future wage income (consuming a part of the loan and investing the rest in higher return equity). However, they are prevented from doing so because human capital alone does not collateralize major loans in modern economies for reasons of moral hazard and adverse selection.

Therefore, in the presence of borrowing constraints, equity is exclusively priced by middle-aged investors because the young are effectively excluded from the equity markets and a high equity premium is thus observed. If the borrowing constraint is relaxed, the young will borrow to purchase equity, thereby raising the bond yield. The increase in the bond yield induces the middle-aged to shift their portfolio holdings from equities to bonds. The increase in demand for equity by the young and the decrease in demand for equity by the middle-aged work in opposite directions. On balance, the effect is to increase both the equity and the bond return, while shrinking the equity premium.

The results suggest that, depending on the parameterization, between 2 and 4 percentage points of the observed equity premium can be accounted for by incorporating life-cycle effects and borrowing constraints.

Conclusion

I have argued that using an appropriate benchmark for the risk-free rate, accounting for the difference between borrowing and lending rates, and incorporating life-cycle features can account for the equity premium. That this can be accomplished without resorting to risk supports the conclusion of Mehra and Prescott (1985) that the premium for bearing systematic risk is small.

My projection for the equity premium is that at the end of the next decade, it will be higher than that observed in the past. During the next 10 years, the ratio of the retired population to the working-age population will increase. These retired households, in an attempt to hedge against outliving their assets, will likely rebalance their portfolios by substituting annuity-like products for equity. Because, in equilibrium, all assets must be held, this substitution will lead to an increase in the expected equity premium. Consequently, during this adjustment process, the realized equity premium will probably be lower than the historical average.

REFERENCES

Constantinides, G.M., J.B. Donaldson, and R. Mehra. 2002. "Junior Can't Borrow: A New Perspective on the Equity Premium Puzzle." *Quarterly Journal of Economics*, vol. 117, no. 1 (February):269–296.

Davis, Stephen J., and Paul Willen. 2000. "Using Financial Assets to Hedge Labor Income Risk: Estimating the Benefits." Working paper, University of Chicago.

McGrattan, E.R., and E.C. Prescott. 2003. "Average Debt and Equity Returns: Puzzling?" *American Economic Review*, vol. 93, no. 2 (May):392–397.

Mehra, R., and E.C. Prescott. 1985. "The Equity Premium: A Puzzle." *Journal of Monetary Economics*, vol. 15, no. 2 (March):145–161.

——. 2008. "Non-Risk-Based Explanations of the Equity Premium." In *Handbook of Invest*ments: The Handbook of the Equity Risk Premium. Edited by R. Mehra. Amsterdam: Elsevier.

Mehra, R., F. Piguillem, and E.C. Prescott. 2011. "Costly Financial Intermediation in Neoclassical Growth Theory." *Quantitative Economics*, vol. 2, no. 1 (March):1–36.

RESEARCH FOUNDATION CONTRIBUTION FORM

Yes, I want the Research Foundation to continue to fund innovative research that advances the investment management profession. Please accept my tax-deductible contribution at the following level:

Please mail this completed fo	rm with your	
City	State/Province	Country ZIP/Postal Code
Address		
Title		
Last Name (Family Name)	First	Middle Initial
PLEASE PRINT Mr. Mrs. Ms.	MEMBER NUMBER	
_		
PLEASE PRINT NAME OR COMPANY NA	ME AS YOU WOULD LIKE	IT TO APPEAR
☐ I would like recognition of my don ☐ Individual donation ☐ Corpor		Different individual
\square This is a pledge. Please bill me for r		
Personal Card	Signature	
Expiration Date Corporate Card	Name on card PL	EASE PRINT
/_ Expiration Date		
Card Number		
☐ Please charge my donation to my co ☐ VISA ☐ MC ☐ Amex ☐	redit card.	
☐ My check is enclosed (payable to the☐ I would like to donate appreciated s		
I would like to donate \$	·	
Research Fellow	\$1,000	to \$9,999
Contributing Research Fellow		

Charlottesville, VA 22903-0638 USA

For more on the Research Foundation of CFA Institute, please visit www.cfainstitute.org/about/foundation/.

The Research Foundation of CFA Institute • P.O. Box 2082

The Research Foundation of CFA Institute Board of Trustees 2011–2012

Chair

Thomas M. Richards, CFA Nuveen HydePark Group, LLC

Jeffery V. Bailey, CFA Target Corporation

Renee Kathleen-Doyle Blasky, CFA Vista Capital Ltd.

Dwight Churchill, CFA Bedford, NH

Margaret E. Franklin, CFA† Kinsale Private Wealth Inc.

William Fung

London Business School

James P. Garland, CFA The Jeffrey Company

John T. "JT" Grier, CFA Virginia Retirement System

Walter V. "Bud" Haslett, Jr., CFA† CFA Institute

Alan M. Meder, CFA†
Duff & Phelps Investment
Management Co.

Lam Swee Sum, CFA National University of Singapore

Frank K. Reilly, CFA* University of Notre Dame John D. Rogers, CFA† CFA Institute

Raymond W. So Hang Seng Management College

Fred H. Speece, Jr., CFA* Speece Thorson Capital Group Inc.

Wayne H. Wagner, CFA Venice Beach, CA

Arnold S. Wood Martingale Asset Management

*Emeritus

†Ex officio

Officers and Directors

Executive Director
Walter V. "Bud" Haslett, Jr., CFA
CFA Institute

Research Director
Laurence B. Siegel
Ounavarra Capital LLC

Secretary
Tina Sapsara
CFA Institute

Treasurer Kim Maynard CFA Institute

Research Foundation Review Board

William J. Bernstein Efficient Frontier Advisors

Stephen J. Brown New York University

Sanjiv Das Santa Clara University

Bernard Dumas INSEAD

Stephen Figlewski New York University

Gary L. Gastineau ETF Consultants, LLC

William N. Goetzmann Yale School of Management Stephen A. Gorman, CFA Wellington Management Company

Elizabeth R. Hilpman Barlow Partners, Inc.

Paul D. Kaplan Morningstar, Inc.

Robert E. Kiernan III Advanced Portfolio Management

Robert W. Kopprasch, CFA
The Yield Book Inc.

Andrew W. Lo Massachusetts Institute of Technology Alan Marcus Boston College

Paul O'Connell FDO Partners

Krishna Ramaswamy University of Pennsylvania

Andrew Rudd Advisor Software, Inc.

Lee R. Thomas Pacific Investment Management Company

Robert Trevor Macquarie University

available online at www.cfapubs.org

