PROJECTS TO AVOID CATASTROPHES

Robert S. Pindyck

Massachusetts Institute of Technology

April 2013

• Suppose over next 50 years there is a likelihood climate change will cause a catastrophic drop in GDP.

- Suppose over next 50 years there is a likelihood climate change will cause a catastrophic drop in GDP.
- Suppose by allocating some fraction of current and future GDP to abatement, we can eliminate the chance of this bad outcome.

- Suppose over next 50 years there is a likelihood climate change will cause a catastrophic drop in GDP.
- Suppose by allocating some fraction of current and future GDP to abatement, we can eliminate the chance of this bad outcome.
- What's the value of this project?

- Suppose over next 50 years there is a likelihood climate change will cause a catastrophic drop in GDP.
- Suppose by allocating some fraction of current and future GDP to abatement, we can eliminate the chance of this bad outcome.
- What's the value of this project?
- Can view the project as an out-of-the-money put option, i.e., a guarantee.

- Suppose over next 50 years there is a likelihood climate change will cause a catastrophic drop in GDP.
- Suppose by allocating some fraction of current and future GDP to abatement, we can eliminate the chance of this bad outcome.
- What's the value of this project?
- Can view the project as an out-of-the-money put option, i.e., a guarantee.
- Value it as such.

- Suppose over next 50 years there is a likelihood climate change will cause a catastrophic drop in GDP.
- Suppose by allocating some fraction of current and future GDP to abatement, we can eliminate the chance of this bad outcome.
- What's the value of this project?
- Can view the project as an out-of-the-money put option, i.e., a guarantee.
- Value it as such.
- I use a simple two-period example.

- Suppose over next 50 years there is a likelihood climate change will cause a catastrophic drop in GDP.
- Suppose by allocating some fraction of current and future GDP to abatement, we can eliminate the chance of this bad outcome.
- What's the value of this project?
- Can view the project as an out-of-the-money put option, i.e., a guarantee.
- Value it as such.
- I use a simple two-period example.
- "Pay" the government a fraction θ of consumption. In return, get guarantee that catastrophic drop in GDP won't happen.

• Now (t = 0) and future (t = T). Under BAU, probability Λ of catastrophe on or before T. If it occurs, C_T falls by fraction ϕ :

$$C_0$$
 $(1+G_T)C_0$ probability $1-\Lambda$ $(1-\phi)(1+G_T)C_0$ probability Λ

• Now (t = 0) and future (t = T). Under BAU, probability Λ of catastrophe on or before T. If it occurs, C_T falls by fraction ϕ :

$$C_0$$
 \nearrow $(1+G_T)C_0$ probability $1-\Lambda$ \nearrow $(1-\phi)(1+G_T)C_0$ probability Λ

• Suppose guarantor (government) is paid fraction θ of current and future consumption. In return, no risk of bad outcome.

• Now (t = 0) and future (t = T). Under BAU, probability Λ of catastrophe on or before T. If it occurs, C_T falls by fraction ϕ :

$$\begin{array}{ccc} & \nearrow & (1+\mathit{G}_{\mathcal{T}})\mathit{C}_{0} & \text{probability } 1-\Lambda \\ & & \searrow & (1-\phi)(1+\mathit{G}_{\mathcal{T}})\mathit{C}_{0} & \text{probability } \Lambda \end{array}$$

- Suppose guarantor (government) is paid fraction θ of current and future consumption. In return, no risk of bad outcome.
- How guarantor eliminates risk doesn't matter. Just want value of guarantee. Guarantor replaces lost consumption $(\phi(1+G_T)(1-\theta)C_0)$ under bad outcome. Guarantor's payoffs:

$$P$$
 0 probability $1-\Lambda$ P \sim $-\phi(1+G_T)(1-\theta)\,C_0$ probability Λ

• Now (t = 0) and future (t = T). Under BAU, probability Λ of catastrophe on or before T. If it occurs, C_T falls by fraction ϕ :

$$\begin{array}{ccc} & \nearrow & (1+\mathit{G}_{\mathit{T}})\mathit{C}_{0} & \text{probability } 1-\Lambda \\ & & \searrow & (1-\phi)(1+\mathit{G}_{\mathit{T}})\mathit{C}_{0} & \text{probability } \Lambda \end{array}$$

- Suppose guarantor (government) is paid fraction θ of current and future consumption. In return, no risk of bad outcome.
- How guarantor eliminates risk doesn't matter. Just want value of guarantee. Guarantor replaces lost consumption $(\phi(1+G_T)(1-\theta)C_0)$ under bad outcome. Guarantor's payoffs:

$$P$$
 0 probability $1-\Lambda$ P \searrow $-\phi(1+G_T)(1- heta)C_0$ probability Λ

• Expected loss to guarantor is $\phi \Lambda(1+G_T)(1-\theta) C_0$.

• Risk-free T-year bond. Risk-free rate over T years is $(1+r_f)^T-1\equiv R_f$. Current and future values of bond:

$$B_0 = \frac{100}{1 + R_f} - \frac{100}{100}$$

• Risk-free T-year bond. Risk-free rate over T years is $(1+r_f)^T-1\equiv R_f$. Current and future values of bond:

$$B_0 = \frac{100}{1 + R_f} \qquad \begin{array}{c} 100 \\ \\ \searrow \\ 100 \end{array}$$

• Create portfolio that replicates possible payoffs from guarantee, so its value must equal value of guarantee.

• Risk-free T-year bond. Risk-free rate over T years is $(1+r_f)^T-1\equiv R_f$. Current and future values of bond:

- Create portfolio that replicates possible payoffs from guarantee, so its value must equal value of guarantee.
- Portfolio long n units of consumption, short m units of risk-free bond. So its current value is:

$$\Phi_0 = nC_0 - mB_0 = nC_0 - \frac{100m}{1 + R_f} \tag{1}$$

The value of the portfolio at time T is:

$$\Phi_{T} = \begin{cases} (1 + G_{T})nC_{0} - 100m & \text{if } C_{T} = (1 + G_{T})C_{0} \\ (1 - \phi)(1 + G_{T})nC_{0} - 100m & \text{if } C_{T} = (1 - \phi)(1 + G_{T})C_{0} \end{cases}$$

• Choose n and m so Φ_T replicates guarantee:

$$(1+G_T)nC_0 - 100m = 0 (2)$$

$$(1+G_T)(1-\phi)nC_0 - 100m = -(1-\theta)(1+G_T)\phi C_0$$
 (3)

- Solve for n and m: $n = 1 \theta$ and $m = (1 + G_T)(1 \theta)C_0/100$
- Plug these n and m into eqn. (1):

$$\Phi_0 = (1 - \theta) C_0 \left[1 - \frac{1 + G_T}{1 + R_f} \right] . \tag{4}$$

• Assume $R_f < G_T$, so $\Phi_0 < 0$. Thus guarantor must be paid:

$$-\Phi_0 = \left\lfloor \frac{G_T - R_f}{1 + R_f} \right\rfloor (1 - \theta) C_0 . \tag{5}$$

To find θ , set this payment equal to θC_0 :

$$\theta = (G_T - R_f)/(1 + G_T)$$
 (6)

So value of guarantee is:

$$-\Phi_0 = (G_T - R_f)C_0/(1 + G_T) = \theta C_0.$$
 (7)

• Effective discount rate: Equate expected PV of guarantor's payout to what he/she gets:

$$\frac{\phi \Lambda (1 + R_f) C_0}{1 + R_T} = -\Phi_0 = \left[\frac{G_T - R_f}{1 + G_T} \right] C_0$$
 (8)

Thus T-year discount rate is:

$$R_T = \frac{\phi \Lambda (1 + R_f)(1 + G_T)}{G_T - R_f} - 1 \ . \tag{9}$$

- Some numbers:
 - T = 50, $r_f = .01$, so $R_f = 1.01^{50} 1 = 0.64$.
 - g = .02, so $G_T = 1.02^{50} 1 = 1.69$.
 - Set $\Lambda = \phi = 0.3$.
 - Then $\theta = 0.39$ and value of guarantee is $0.39C_0$.
 - Also, $R_T = -0.622$. Implies annual discount rate of -0.0193.
 - If g = .015 so $G_T = 1.015^{50} 1 = 1.105$, $\theta = 0.22$.

Willingness to Pay

• Would society pay so much? Need social utility function:

$$u(C) = C^{1-\eta}/(1-\eta)$$
,

with $\eta>1$. Let $\delta=$ rate of time preference. $\lambda=$ annual mean arrival rate for event, so $\Lambda_{\mathcal{T}}=1-e^{-\lambda\,\mathcal{T}}.$ Also, θ depends on $\mathcal{T}\colon\theta_{\mathcal{T}}=1-\left(\frac{1+r_{\!f}}{1+g}\right)^{\mathcal{T}}$.

ullet With no guarantee, $U=u(\mathcal{C}_0)+\mathcal{E}u(\mathcal{C}_{\mathcal{T}})(1+\delta)^{-\mathcal{T}}$ is

$$U_{1} = \frac{C_{0}^{1-\eta}}{1-\eta} \left\{ 1 + \frac{(1+g)^{(1-\eta)T}}{(1+\delta)^{T}} [1 - e^{-\lambda T} + (1 - e^{-\lambda T})(1-\phi)^{1-\eta}] \right\}$$
(10)

With guarantee, total utility is

$$U_2 = \left(\frac{1+r_f}{1+g}\right)^{(1-\eta)T} \frac{C_0^{1-\eta}}{1-\eta} \left\{ 1 + \frac{(1+g)^{(1-\eta)T}}{(1+\delta)^T} \right\}$$
(11)

Should society give up $\theta_T C_0$? Only if $U_2 > U_1$. U_1 and U_2 are both negative so $U_2 > U_1$ implies $U_1 / U_2 > 1$.

Ratio of Value Functions

η	T	g	λ	φ	θ	r_T	U_1/U_2
2	20	0.02	0.01	0.3	.18	048	0.847
2	50	0.02	0.01	0.3	.39	014	0.634
1.5	50	0.02	0.01	0.3	.39	014	0.804
3	50	0.02	0.01	0.3	.39	014	0.392
2	20	0.015	0.01	0.3	.09	017	0.936
2	50	0.015	0.01	0.3	.22	002	0.824
2	20	0.015	0.02	0.3	.09	.013	0.960
2	50	0.015	0.02	0.3	.22	.007	0.849
2	20	0.015	0.02	0.6	.09	.048	1.097
2	50	0.015	0.02	0.6	.22	.021	1.020

• Willingness to "build": Is fraction θ of consumption sufficient to enable government to actually make (and honor) guarantee.

- Willingness to "build": Is fraction θ of consumption sufficient to enable government to actually make (and honor) guarantee.
- Unlike financial guarantee which simply involves possible transfer of funds, this guarantee involves actual physical investment.

- Willingness to "build": Is fraction θ of consumption sufficient to enable government to actually make (and honor) guarantee.
- Unlike financial guarantee which simply involves possible transfer of funds, this guarantee involves actual physical investment.
 - Cost might be so high that provision of guarantee is infeasible.

- Willingness to "build": Is fraction θ of consumption sufficient to enable government to actually make (and honor) guarantee.
- Unlike financial guarantee which simply involves possible transfer of funds, this guarantee involves actual physical investment.
 - Cost might be so high that provision of guarantee is infeasible.
 - Cost might be lower than its value, so provision of guarantee is a net positive NPV project.

- Willingness to "build": Is fraction θ of consumption sufficient to enable government to actually make (and honor) guarantee.
- Unlike financial guarantee which simply involves possible transfer of funds, this guarantee involves actual physical investment.
 - Cost might be so high that provision of guarantee is infeasible.
 - Cost might be lower than its value, so provision of guarantee is a net positive NPV project.
- Suppose cost of making guarantee is $K_0 = kC_0$. If $kC_0 > \theta C_0$, project is economically infeasible. If $kC_0 < \theta C_0$, project has positive NPV, and its expected return will exceed R_T .

- Willingness to "build": Is fraction θ of consumption sufficient to enable government to actually make (and honor) guarantee.
- Unlike financial guarantee which simply involves possible transfer of funds, this guarantee involves actual physical investment.
 - Cost might be so high that provision of guarantee is infeasible.
 - Cost might be lower than its value, so provision of guarantee is a net positive NPV project.
- Suppose cost of making guarantee is $K_0 = kC_0$. If $kC_0 > \theta C_0$, project is economically infeasible. If $kC_0 < \theta C_0$, project has positive NPV, and its expected return will exceed R_T .
- Suppose $k < \theta$. WTP might be $< \theta C_0$ but $> kC_0$.

- Willingness to "build": Is fraction θ of consumption sufficient to enable government to actually make (and honor) guarantee.
- Unlike financial guarantee which simply involves possible transfer of funds, this guarantee involves actual physical investment.
 - Cost might be so high that provision of guarantee is infeasible.
 - Cost might be lower than its value, so provision of guarantee is a net positive NPV project.
- Suppose cost of making guarantee is $K_0 = kC_0$. If $kC_0 > \theta C_0$, project is economically infeasible. If $kC_0 < \theta C_0$, project has positive NPV, and its expected return will exceed R_T .
- Suppose $k < \theta$. WTP might be $< \theta C_0$ but $> kC_0$.
- If project were offered by a private firm, might be provided at a cost equal to WTP, so it still has a positive NPV.

- Willingness to "build": Is fraction θ of consumption sufficient to enable government to actually make (and honor) guarantee.
- Unlike financial guarantee which simply involves possible transfer of funds, this guarantee involves actual physical investment.
 - Cost might be so high that provision of guarantee is infeasible.
 - Cost might be lower than its value, so provision of guarantee is a net positive NPV project.
- Suppose cost of making guarantee is $K_0 = kC_0$. If $kC_0 > \theta C_0$, project is economically infeasible. If $kC_0 < \theta C_0$, project has positive NPV, and its expected return will exceed R_T .
- Suppose $k < \theta$. WTP might be $< \theta C_0$ but $> kC_0$.
- If project were offered by a private firm, might be provided at a cost equal to WTP, so it still has a positive NPV.
- If government and society are the same, would presumably be provided at its actual cost kC_0 , so its NPV is zero.

 We now have three numbers that characterize the economics of this project:

- We now have three numbers that characterize the economics of this project:
 - **1** Its value as a contingent claim, θC_0

- We now have three numbers that characterize the economics of this project:
 - **1** Its value as a contingent claim, θC_0
 - ② Its actual cost, kC_0

- We now have three numbers that characterize the economics of this project:
 - **1** Its value as a contingent claim, θC_0
 - 2 Its actual cost, kC_0
 - Its value to society, as measured by society's WTP

- We now have three numbers that characterize the economics of this project:
 - **1** Its value as a contingent claim, θC_0
 - ② Its actual cost, kC_0
 - Its value to society, as measured by society's WTP
- Evaluating the project involves a comparison of all three of these numbers.