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Abstract

This paper examines the choice between subsidizing investment or output to promote

socially desirable production. We exploit a natural experiment in which wind farm

developers could choose an investment or an output subsidy to estimate the impact of

these policy instruments on productivity. Using instrumental variables and matching

estimators, we find that wind farms claiming the investment subsidy produced 10 to

12 percent less power than wind farms claiming the output subsidy, and that this

effect reflects subsidy incentives rather than selection. Introducing investment subsidies

caused the Federal government to spend 14 percent more per unit of output from wind

farms.
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1 Introduction

Governments subsidize investment for a variety of reasons. When economic output falls

well below potential output, policymakers subsidize investment to stimulate the economy

(House and Shapiro, 2008; Auerbach et al., 2010). To address the market failure of innovation

spillovers, governments subsidize research and development spending (Wright, 1983). To

increase the supply of affordable housing, governments subsidize specific types of real estate

development (Desai et al., 2010). To spur the replacement of pollution-intensive facilities,

policymakers subsidize the construction of low-emission power plants (Aldy, 2013). In each of

these examples, the social benefits of subsidized investments are tied to the eventual output

they produce, not just the investment itself. Given this, it is noteworthy that governments also

often directly subsidize output in these settings, through government procurement, research

prizes, Section 8 housing vouchers, and tax credits for clean energy production.

Should policymakers subsidize investment or output to promote socially desirable pro-

duction? If the government’s objective is to minimize the public expenditure necessary to

meet an output target, the answer is theoretically ambiguous. Whether investment subsidies

are more or less cost-effective depends on how intensively investment goods are used at the

margin, compared to on average, and how substitutable they are with other unsubsidized

inputs (Parish and McLaren, 1982). Despite the ubiquity of both types of subsidies, to date

there has been little empirical evidence on how well (or poorly) targeted they are in practice.

In this paper, we provide the first direct empirical evidence on this topic. We focus on

the U.S. wind power industry, where a unique policy innovation temporarily allowed project

developers to choose between investment and output subsidies. Historically, the primary

Federal subsidy program supporting wind energy was the Production Tax Credit (PTC),

which provides eligible owners with $23 for each megawatt hour (MWh) of output produced

during the first ten years of operation. In 2009, in response to the unprecedented challenges

of monetizing tax credits during the financial crisis, the Federal government introduced an

alternative subsidy, the Section 1603 grant. This program provided wind farm developers with

the choice between the PTC and an upfront cash payment equal to 30 percent of investment

costs, until it was phased out in 2012.

We use the abrupt timing of this policy change to estimate the impact of output subsidies

on wind farm productivity, conditional on operating. As there is no within-facility variation

in subsidy type, we compare the output of firms which did and did not select the investment

subsidy. Our first empirical strategy to address this selection uses instrumental variables

on a restricted sample of wind farms placed into service within 12 months of the January

1, 2009 policy change. Within this window, the long lead time of wind farm development
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ensures that major siting and capital decisions would have been fixed well before the 1603

program was conceived. To estimate the effect of replacing output with investment subsidies,

we instrument for investment subsidy selection with an indicator for whether a plant in

this restricted sample was eligible for the 1603 program.1 Our second empirical strategy is

a matched difference-in-differences estimator on the full population of wind farms placed

into service between 2005 and 2012. We first use matching to identify which plants in the

pre-1603 period would have selected the investment subsidy had it been available. We then

compare output between plants that, based on observables, appear to prefer output subsidies

to those that appear to prefer investment subsidies before and after investment subsidies were

made available. Both approaches yield similar results despite relying on different identifying

assumptions. We find that claiming an investment subsidy causes a 10 to 12 percent reduction

in production per unit of operating capital (relative to claiming an output subsidy).

We then weigh this intensive margin loss against any extensive margin gains from the

subsidy. For the first few years of the program, long project lead times effectively locked in

the maximum number and size of projects before the 1603 program was announced. In this

light, investment subsidies appear poorly targeted. Using data on plant proposals, we find

little change in the probability that a proposed plant comes to fruition during the policy

period. We then use plant-specific investment cost and marginal revenue data to construct a

measure of discounted profits for every plant that received a 1603 grant, and find that only

four percent of the 1603 recipients appear marginal to the investment subsidy. Weighing the

output gained from these facilities against the reduced output from inframarginal facilities,

we find that the Federal government paid 14 percent more per unit of output from the wind

farms claiming the 1603 grant than they would have under the PTC.

We also look for evidence of distortions in the composition of wind farm inputs resulting

from the non-uniform nature of the input subsidy provided by the 1603 grant. Non-uniform

input subsidies introduce social inefficiency by distorting the relative input prices firms face

(Goolsbee, 2004). Due to long wind farm development lead times, the input mix of initial

1603 grant claimants was fixed before the policy change, while wind farms entering during

the latter part of the program likely had time to adjust their development plans in response

to the subsidy. We find that, over time, 1603 recipients used increasingly larger turbines,

which were subsidized, and less land, which was not subsidized, relative to contemporaneous

PTC plants.

Finally, we examine the efficiency implications of using a uniform output subsidy given

that the marginal benefits of wind energy vary across time and space. In particular, an

1We also use this instrument to implement a parametric fuzzy regression discontinuity design in Appendix
Table D.1.

3



output-based subsidy allows wind farms to continue to supply electricity profitably when

wholesale electricity market prices are negative (due to short-term inflexibilities in the power

system), whereas an investment subsidy does not. We compile data on the freqeuncy of

negative price events near plants in our sample, and find that it explains some, but not all,

of the observed productivity decline at 1603 plants. We then use estimated average marginal

carbon dioxide emission rates from Callaway et al. (2018) to show that in four of the largest

U.S. electricity markets, marginal emissions are likely to be higher during negative price

periods, not lower. This does not hold, however, in all markets. Thus, while output subsidies

are effective at encouraging production, they are clearly a less efficient solution to carbon

pollution externalities than a Pigouvian tax.

Despite extensive research on both optimal taxation and instrument choice, there is little

research on the relative performance of input and output subsidies.2 Schmalensee (1980)

considers the conceptual merits of government policy to increase energy production generally,

and concludes that input subsidies build in “potentially huge inefficiencies” relative to an

output subsidy. Parish and McLaren (1982) provide a formal treatment of the tradeoffs

between input and output subsidies, and demonstrate that the relative cost-effectiveness of

these subsidies depends on two key context-specific factors. First, the shape of the production

function matters: with decreasing returns, an input subsidy can achieve a given increase in

output at lower cost than an output subsidy. Second, input intensities matter: subsidizing

one input can be more cost-effective than a uniform input subsidy if that input is used

more intensively at the margin than on average. In the special case of a decreasing returns

production function, subsidizing an input that is used more intensively on the margin than

on average and is not substitutable with other inputs requires less public expenditure than

subsidizing output. In other situations, the output subsidy can dominate a non-uniform input

subsidy.

The empirical literature on this topic is limited. While there is a large literature on the

effects of investment tax incentives across industries (e.g., Goolsbee, 1998, 2004; House and

Shapiro, 2008), these papers do not compare investment incentives to alternative instruments

that target output. A few relevant papers estimate dynamic structural models of adoption

in the solar industry (Burr, 2016; De Groote and Verboven, 2019) or ethanol plant entry

(Yi et al., 2018) in response to one of the two subsidies and assess the impact of the other

subsidy using counterfactual simulations. In contrast, we exploit a natural experiment to

directly compare the two types of subsidies.

This paper also contributes to a growing literature on renewable energy policy. Several

2The question was qualitatively discussed in several development contexts in the 1980s. For example,
Stiglitz (1987) compares and contrasts crop price supports and subsidized fertilizer.
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papers focus on estimating the environmental benefits of renewable electricity generation

(e.g., Cullen, 2013; Novan, 2015; Callaway et al., 2018; Graff Zivin et al., 2014). Metcalf

(2010) relates the PTC to the user cost of capital and finds that wind investment is highly

responsive to changes in tax policy. Schmalensee (2016) compares U.S. renewable subsidies

to policy alternatives such as a feed-in tariff or a cap-and-trade program to limit emissions.

Our paper represents the first attempt to directly estimate the efficacy of alternative types of

renewable subsidies by explicitly considering their implications for firm productivity. In that

sense, our results build upon other work focusing on the impacts of electricity restructuring

and deregulation. This research has shown that altering production incentives can have

economically significant impacts on nuclear and coal-fired power plant operations, as well

as the efficiency of electricity market outcomes generally (Fabrizio et al., 2007; Davis and

Wolfram, 2012; Cicala, 2015).

The rest of this paper proceeds as follows. Section 2 provides a brief introduction to the

economics of wind energy and a detailed description of the policy environment, and then

presents a theoretical model of subsidy choice based on these details. Section 3 describes

the data and Section 4 discusses our empirical strategy. Section 5 reports the results and

Sections 6 and 7 discuss policy implications and conclude.

2 The Economics of Wind Power

2.1 Wind Farm Production

A wind turbine consists of a rotor with three long blades connected to a gearbox and generator

atop a large tower. As wind passes through the blades, the rotor spins a drive shaft connected

through a series of gears to a generator that converts this kinetic energy to electrical energy.

The amount of power generated by a wind turbine is determined primarily by the design of

the turbine and the velocity of the wind. Nameplate capacity, denominated in megawatts

(MW), is the maximum rated output of a turbine operating in ideal conditions. Wind turbines

typically operate at rated capacity at wind speeds of 33 miles per hour (15 meters/second),

and shut down when the wind speed exceeds 45-55 miles per hour (20-25 meters/second)

to prevent damage. Figure A.1 presents the marketed power curves for two common wind

turbine models in our sample, demonstrating the nonlinear relationship between wind speed

and output.

Building a wind farm involves large upfront costs. The average implied investment cost

for plants receiving a 1603 grant in our data is $165 million. Wind farm development also

requires long lead times. Developers first have to survey and secure access to land that is
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both sufficiently windy and close to existing transmission lines. They then have to obtain

financing and siting permits, as well as negotiate any power purchase agreements. The

construction phase of a wind farm takes 9 to 12 months, with site permitting and turbine

lead times often double that (Brown and Sherlock, 2011). Turbines are ordered up to 24

months before ground is broken, and, at that point, the size and location of a project is fairly

fixed.3 For wind farms coming online in 2009 and 2010 in the Midcontinent Independent

System Operator (MISO), an average of 2.7 and 3.5 years passed between when the wind

farms began the process of connecting to the grid and when they actually began supplying

electricity.4 Although wind operators do not incur fuel costs, there are a number of variable

costs associated with running a wind farm efficiently once it is installed. Turbines need

to be monitored and serviced regularly to operate at peak efficiency (Wiser and Bolinger,

2014). Placing more emphasis on routine maintenance can reduce the probability of failure,

and, conditional on failure, service arrangements and crane availability induce variation in

turnaround times across operators. The gearbox, in particular, contains a complicated set of

parts that, if not serviced, can reduce the fraction of wind power harnessed or cause the unit

to be taken offline entirely. Software services that optimize wind farm operations can also

boost output. For example, General Electric offers a product called “PowerUp”, which it

describes as “a customized suite of software and hardware-enabled technologies created to

increase a wind farm’s output by up to 10%, taking into account environmental conditions.”5

In 2013, operations and maintenance (O&M) costs at U.S. wind farms were on the order of

$5 to $20 per MWh, with a few plants with O&M costs in excess of $60 per MWh (Wiser

and Bolinger, 2014).

2.2 Renewable Power Policies

The United States has implemented many policies —at Federal, state, and even local levels

—to promote investment in wind power. Since 1992, the leading Federal subsidy for wind farm

developers has been the PTC. The PTC is a tax credit for electricity generated by qualified

energy resources and sold to an unrelated party during the tax year. Congress initially set

the PTC at $15/MWh, but automatic inflation adjustments made it worth $23/MWh for

qualifying generation in 2014. A qualifying generation source can claim the PTC for the first

3Turbine lead times approached two years during the peak demand period in the first half of 2008 (Lantz
et al., 2012, p. 12). Market fundamentals have since changed, and lead times have dropped significantly.
Nevertheless, there is a natural lag between turbine contract signing and project commissioning such that
turbines ordered in early 2008 were employed in projects that were completed in 2010.

4Authors’ estimate based on MISO interconnection queue data. New electricity generators enter the
interconnection queue to request the ability to connect to the electricity grid and supply electricity once
construction is complete.

5Source: General Electric website (accessed 1/29/2018).
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ten years of generation after the plant is placed into service. Prior to the 2008 financial crisis,

wind farm developers typically monetized tax credits by partnering with a financial firm in

the tax equity market. During the financial crisis, more than half of the suppliers of tax

equity departed this market, such as Lehman Brothers and AIG. This introduced financing

challenges for wind farm developers that did not have (nor anticipate to have) sufficient tax

liability to monetize the tax credits on their own (U.S. PREF, 2010).

In this financial context, wind farm developers sought new ways to realize the value of

the PTC. During the 2008-2009 Presidential Transition, representatives of the wind industry

advocated for making the PTC refundable and creating long carry-back provisions to the

Presidential Transition Team and Congressional staffers, but these ideas were not acceptable

to the bill writers. In early January 2009, Congressional and Presidential Transition Team

members discussed for the first time the idea of availing the Investment Tax Credit (ITC)

to all renewable power sources as part of what would become the American Recovery and

Reinvestment Act of 2009 (“The Recovery Act”).6 Moreover, the bill negotiators agreed to

provide an option for project developers to select a cash grant of equal value to the ITC in

lieu of the ITC or PTC. When the bill became law the following month, Congress agreed to

make the ITC and Section 1603 grant options available retroactively to projects placed into

service on or after January 1, 2009. Wind farms were already eligible for the PTC under

current law at the time. The Recovery Act extended the sunset date for the wind PTC until

December 31, 2012 (which has been extended again in several subsequent tax laws). A wind

project could claim a 1603 grant if it was placed into service before the end of 2012 and its

construction began in 2009, 2010, or 2011.

The Recovery Act thus provided wind power developers with a new, mutually exclusive

subsidy choice: they could claim the PTC or they could claim the Section 1603 grant in

lieu of tax credits.7 This policy approach was novel and unexpected along two dimensions.

First, wind power had never been supported by a Federal investment subsidy and the policy

proposals discussed by wind industry advocates focused on modifying the existing PTC.

Second, providing a taxpayer with the option of a cash payment in lieu of a tax credit had

never been pursued before the Recovery Act in any tax policy context (John Horowitz, Office

6One of the authors served as one of two staff who negotiated the energy provisions of the Recovery Act
representing the Obama Presidential Transition Team. He met regularly with staff to the House Ways and
Means and Senate Finance Committees in December 2008 and January 2009, as well as with career Treasury
staff in the Office of Tax Policy. In January 2009, upon agreement with Congressional negotiators of what
became the Section 1603 grant in the Recovery Act, the author briefed a large meeting of the renewables
industry at the Presidential Transition Team offices where the unexpected, novel nature of this policy was
evident in the meeting participants’ reactions.

7While the Recovery Act provided developers with the option of taking an ITC, in practice, they chose
between the PTC and the Section 1603 grant. The annual Internal Revenue Service Estimated Data Line
Counts reports show that not one corporation claimed the ITC for a wind power project over 2009-2011.
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of Tax Policy, U.S. Treasury, 2015).8 In total, the Treasury made about 400 Section 1603

grant awards to large wind farms, disbursing over $12 billion.

These two Federal subsidies exist in a complicated energy and environmental policy space

characterized by multiple, overlapping regulatory and fiscal policy instruments focused on

wind power development (Aldy, 2013; Metcalf, 2010; Schmalensee, 2012). Since the major

tax reform of 1986, wind farm developers could employ the modified accelerated cost recovery

system that effectively permits a developer to depreciate all costs over five years, instead of the

norm of twenty years for power generating capital investments. Since 2005, the Department

of Energy loan guarantee program provided a mechanism for wind power developers to

secure a Federal guarantee on project debt that could significantly lower the cost of financing

the project. Many states also have a renewable portfolio standard (RPS) that mandates

a minimum share of the state’s power comes from renewable sources, resulting in a price

premium for wind power. Under some state RPS programs, renewable energy credits for

wind power generation have been worth more than $50/MWh, or more than twice the value

of the PTC (Schmalensee, 2012). States also provide subsidies through state tax credits and

property tax exemptions. For purposes of the statistical analyses below, it is important to

recognize that these policy instruments generally did not change contemporaneously with the

policy innovation of the Section 1603 grants.9

2.3 A Model of Subsidy Choice

In order to motivate our empirical evaluation of the 1603 grant program, we begin with a

simple model of firm behavior under the two subsidy regimes. Consider a wind farm with

K megawatts of capacity that has already been constructed. In each time period, if the

wind farm is available, it generates electricity and receives a price p per unit of electricity.

Availability, a, follows a Bernoulli distribution with success probability α. Wind farms can

influence this success rate through costly effort, e, exerted in advance at maintenance cost m

(both denoted per unit capacity). Effort is assumed to have decreasing returns, with α(e)′ > 0,

α(e)′′ < 0. Since effort is chosen in advance, availability realizations are independent of the

8The Fall 2008 debate over a one-year extension of the wind PTC further illustrates the novelty of the
cash grant policy. At that time, the PTC had been authorized by a 2006 tax law that established a December
31, 2008 sunset. On October 2, 2008, as a part of the Troubled Asset Relief Program (TARP) Bill, Congress
extended the PTC sunset provision to December 31, 2009. Despite the obvious salience of the financial crisis
in writing the PTC extension into the TARP Bill, Congress did not provide the investment tax credit or the
cash grant option in the law. Put simply, the legislative action on the TARP Bill preceded the idea of giving
wind developers options over their choice of subsidy.

9In the few cases we are aware of where states changed their policies, they only modified RPS targets ten
or more years in the future without changing their near-term targets.
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realized price, E[a|e, p] = E[a|e] = α(e).10 Per period operating profits are

π0 = K[pα(e)−me]. (1)

At the start of each operating period, the firm selects e to maximize expected operating

profits. Its optimization program selects maintenance by equating the marginal cost of effort

with the marginal induced change in availability times the expected price

E[p]α′(e)−m = 0. (2)

Denote this optimal effort level e0 and the corresponding availability rate α0.

Now consider an output subsidy s per unit of quantity produced. Expected operating

profits per period become

π1 = K[(E[p] + s)α(e)−me], (3)

with corresponding first order condition

(E[p] + s)α′(e)−m = 0. (4)

Denote this optimal effort level e1 and the corresponding availability rate α1. Under the

assumption that α′′ < 0 , the effort level with the subsidy (e1) will be higher than without

(e0). This implies that, all else equal, expected output (Kα) will be higher with output

subsidies as well.

Now consider an alternative subsidy which reduces upfront capital costs F by ψ percent.

Lifetime expected profits under this investment subsidy are

Π0 = TK[E[p]α0 −me0]− (1− ψ)F, (5)

where T is the lifetime of a wind farm.11 At the start of operation, the firm must decide if it

prefers those profits to the profits under the output subsidy,

Π1 = TK[(E[p] + s)α1 −me1]− F, (6)

10This assumes that wind farm availability and output have no impact on equilibrium prices. Given that
wind farms are small relative to demand and that electricity markets are relatively well integrated, this is a
reasonable assumption.

11We do not explicitly include a discount factor for clarity, and instead subsume discounting into T .
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which is the case if

ψ(F/K) > T {(E[p] + s)(α1 − α0)−m(e1 − e0)}+ sTα0. (7)

For small changes in effort, the term in braces on the right will be zero under the envelope

theorem, and equation 7 predicts that investment subsidies will be preferred by firms with

high per unit capital costs (F/K) relative to their baseline (unsubsidized) expected operating

level (α0). Intuitively, the inequality states that wind farms will prefer output subsidies when

this additional operating profit is greater than the forgone subsidy per unit of capacity. For

non-marginal changes in effort, the choice will also depend on the concavity of α.

It is this correlation between subsidy preference and latent productivity which generates

selection in subsidy choice and confounds our evaluation of the 1603 grant program. There

are measures that wind farm operators can take that will increase output conditional on

other attributes, as discussed in Section 2.1. If these measures are costly, then increasing

the marginal price received for output will make adoption more likely under the PTC. Thus,

conditional on operating, we predict that removing the PTC will result in lower output.

Ideally we would estimate τ = E[Ki(αi0 − αi1)]. However, the policy was implemented with

a choice, so we are only able to observe τ̂ = E[Kiαi0|Πi0 > Πi1]− E[Kiαi1|Πi0 < Πi1].

3 Data

In this section, we concisely summarize the data sources used and sample restrictions imposed.

We provide additional detail on the sources and the sample in Appendix A. We compiled

data on wind farm characteristics and output from two publicly available Energy Information

Administration (EIA) surveys covering all utility-scale wind farms in the United States.

The EIA-860 database, which reflects an annual survey of power plants, contains: first

date of commercial operation, operator, location, nameplate capacity, number of turbines,

predominant turbine model, average annual wind speed,12 wind quality class,13 regulatory

status of the plant, entity type14 of the principle owner, and operation within a regional

transmission organization (RTO) or independent system operator (ISO). We combine this

12We also refer to EIA’s average annual wind speed as “design wind speed” to distinguish it from wind
speed data from 3TIER.

13Wind quality class takes one of four categories defined by the International Electrotechnical Commission
14The entity types recorded on Form EIA-860 are: cooperative, investor-owned utility, independent

power producer, municipally-owned utility, political subdivision, federally-owned utility, state-owned utility,
industrial, and commercial. We use this information to restrict our sample as described in the text. We also
use it to construct a dummy variable for independent power producer (IPP) that we include in our analysis
in order to capture variation in ownership structure conditional on regulatory status, as some non-regulated
plants are owned by investor-owned utilities.
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annual plant-level information with monthly electricity generation data collected through the

Form EIA-923 survey of power plants.

We supplement these EIA data with proprietary data from the American Wind Energy

Association (AWEA), 3TIER, and turbine manufacturers. The AWEA database contains

additional cross-sectional information on each wind farm, including the wind turbine model

and whether projects contract output through long-term power purchase agreements (PPAs)

or sell on spot markets. We use the former to corroborate turbine data in the EIA-860 and the

latter to construct “offtake type” indicator variables which control for potentially differential

contracting arrangements across 1603 and PTC recipients in the estimated regression models.

3TIER uses global wind and weather monitor data to interpolate hourly wind speed,

wind direction, air pressure, and temperature for the entire continental United States at a

spatial resolution of approximately 5 kilometers.15 We combine these high frequency wind

data with power curves from turbine manufacturers for each turbine make and model in the

EIA data.16 Using this information, we compute an “engineering” estimate of the potential

output for each plant-month that accounts for the site-specific, nonlinear relationship between

wind speeds and electricity generation. Further detail on this variable and its construction is

provided in Appendix A.2.

The final dataset comes from the U.S. Department of Treasury. The dataset provides

information on every large wind project recipient of a 1603 grant, including the amount

awarded (equal to 30 percent of eligible investment costs), the date of the award, and the

date placed in service.17 We assume that all developers of non-1603 recipient wind farms

claimed the PTC based on both guidance provided by staff at the American Wind Energy

Association and Internal Revenue Service data. Specifically, we confirmed that no corporation

claimed the ITC for PTC-eligible projects (i.e., wind) in 2009, 2010, and 2011 in the annual

Internal Revenue Service Estimated Data Line Counts reports for corporation tax returns.

We do not have tax data on the PTC claims, although we observe all power related data for

presumed PTC-claimants through the EIA data described above.

Table 1 presents an annual summary of these data for plants entering service between 2002

and 2014.18 In our empirical analysis, we restrict attention to plants with owners classified as

15For more information on how this dataset is constructed, see: http://www.3tier.com/en/support/wind-
prospecting-tools/how-was-data-behind-your-prospecting-map-created/ (Accessed 2/14/2017).

16Power curves were primarily obtained from http://www.wind-power-program.com/ (last accessed
2/14/2017), and supplemented with information obtained directly from turbine manufacturer marketing
materials (generously provided to us by Joern Huenteler).

17The Department of the Treasury distinguished between “large” wind projects, which are eligible for the
production tax credit, and “small” wind projects, which must have nameplate capacity no greater than 100
kilowatts and are eligible for investment tax credits. All utility-scale wind projects and all wind farms in the
data compiled from the EIA fall into the “large” wind project category.

18There are two potential ways to define online date based on the EIA data. One is the date that the
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either independent power producers or investor-owned utilities. Commercial and industrial

facilities are excluded, as are plants that are publicly owned (e.g., municipal power plants),

as these plants are not eligible for the PTC. We also exclude a small number of plants that

appear to have claimed the PTC for some turbines that came online before 2009 and the

Section 1603 grant for some turbines that came online in 2009 or later (see Appendix A for

further details).

Table 1: Summary Statistics by Entry Date

Year Plants
(all)

Plants
(sample)

Plants
(1603)

IOU or
IPP

Regulated Capacity Turbine
Size

Wind
Speed

Capacity
Factor

2002 12 9 0 0.75 0.33 48.46 1.21 17.97 29.83
2003 36 29 0 0.86 0.08 44.93 1.33 18.64 31.34
2004 14 9 0 0.86 0.21 26.89 1.49 17.69 32.33
2005 23 17 0 0.74 0.17 92.38 1.50 18.59 35.38
2006 44 36 0 0.93 0.14 43.08 1.44 17.86 34.91
2007 52 44 0 0.94 0.12 105.65 1.77 18.48 35.74
2008 95 69 0 0.95 0.15 84.74 1.80 17.89 34.48
2009 103 77 65 0.84 0.17 91.70 1.81 17.65 31.85
2010 62 49 44 0.89 0.08 67.50 1.76 17.02 32.12
2011 91 64 62 0.80 0.13 74.47 1.92 17.22 31.15
2012 149 109 74 0.93 0.11 87.77 1.99 17.22 34.33
2013 11 0 0 0.73 0.09 71.64 1.75 18.14 34.86
2014 38 0 0 0.84 0.16 92.59 1.82 18.59 31.30

Each row contains summary statistics for the set of wind farms in our sample that were placed into service in
that year. Plants (all) is the number of wind farms placed into service in that year, Plants (sample) is the
number in our restricted sample (see text and Appendix A), and Plants (1603) is the number of Section 1603
grant recipients. All remaining columns are constructed using 2014 data from EIA Forms 860 and 923 except
for Capacity and Turbine Size, which are constructed using the first values reported to the EIA. IOU or
IPP is the share of wind farms that are owned by an investor-owned utility or independent power producer.
Regulated is the share of wind farms that are regulated. Capacity is the average total nameplate capacity in
MW. Turbine Size is the average turbine capacity in MW. Wind Speed is the average annual wind speed in
miles per hour for each wind farm as reported to the EIA. Capacity Factor is the average of net electricity
generation divided by capacity.

Table 2 compares projects placed into service after the introduction of the 1603 program by

subsidy type along observable dimensions. Although the overall project sizes are comparable,

1603 recipients are located in areas with slightly lower average wind speeds, are less likely to

survey respondent reports to EIA that the plant began commercial operation on Form EIA-860; the other
is the first date that its generation appears in the EIA-923 production data. Although these by and large
coincide, discrepancies can appear due to “pre-commercial” plant testing (923 date < 860 date) or due to
the delay with which EIA begins tracking new plants (860 date < 923 date). This is important because the
online date determines 1603 grant eligibility (our instrument). We use the 860 date, as we were told by an
EIA expert that this date would be more accurate for our purposes. Nevertheless, IV results are robust to
using the 923 date instead. In all specifications, plants with conflicting 923 and 860 dates around the 2009
eligibility cutoff are excluded from the sample.
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operate in a regulated market, and are more likely to contract output through PPAs. Projects

selecting the 1603 grant also have lower potential and realized capacity factors. The capacity

factor is the ratio of output to the maximum attainable output of a plant if it had constantly

produced at its nameplate capacity.19 Thus, 1603 recipients produce less electricity than

PTC recipients on average, relative to their total potential output. In the next section, we

describe our strategy for identifying the portion of this observed difference in productivity

attributable to the subsidy.

Table 2: Comparison of 2009-2012 Projects by Policy Choice

PTC 1603 Difference p-value

Nameplate Capacity (MW) 102.27 92.03 10.24 0.30
Turbine Size (MW) 1.84 1.91 -0.07 0.20
Design Wind Speed (MPH) 17.81 17.33 0.48 0.27
Regulated 0.23 0.03 0.20 0.00
IPP 0.68 0.89 -0.21 0.00
PPA 0.67 0.86 -0.19 0.00
Potential Capacity Factor 39.59 34.83 4.76 0.00
Capacity Factor 36.76 30.61 6.15 0.00

New Wind Farms 107 192

Each row contains a two-sample t-test for a difference in means between recipients of the PTC and the Section
1603 grant that came online in 2009-2012 and are in the restricted sample described in Section 3. Regulated,
IPP, and PPA are binary variables. Potential Capacity Factor and Capacity Factor are ratios (scaled by 100).

4 Empirical Strategy

4.1 Model

To investigate whether shifting subsidies from the intensive margin to the extensive margin

reduced wind farm productivity, we estimate the following regression under several different

assumptions and sample restrictions:

qit = δDi + βXit + νit (8)

19Capacity factors are a commonly used metric of operational activity in the electric power sector (see, for
example, Davis and Wolfram, 2012). Potential capacity factor is a constructed “engineering” based capacity
factor estimate using only a plant’s wind turbine and wind speed information. Additional detail provided in
Appendix A.2.
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Here i indexes wind farms and t indexes month-year time periods. The dependent variable q

is the plant’s capacity factor (in percentage points). D is an indicator for whether the wind

farm took the 1603 grant and X is a vector of controls, such as engineering-based potential

capacity factor, regulatory regime, presence of a power purchase agreement, and location

dummies. The coefficient of interest, δ, is the effect of the 1603 grant on production outcomes.

If wind farms were less productive under the 1603 grant, we would expect δ to be negative.

Estimating equation 8 using OLS is potentially problematic due to the fact that Di was

chosen. As was shown in Section 2.3, plants that expect to have high output relative to

their investment costs will prefer the PTC, while plants with relatively high investment costs

per unit of expected output will prefer the Section 1603 grant. Thus, OLS estimates could

confound any reduced marginal effort due to the Section 1603 grant program with the fact

that less productive plants are likely to have selected into it. We employ two complementary

empirical approaches to identify the causal effect of the Section 1603 grant on wind farm

output: an instrumental variables estimator and a matching estimator.

4.2 Instrumental Variables Strategy

Our primary empirical strategy harnesses the natural experiment created by the 1603 grant

program by comparing wind farms that came online just before and just after the program

went into effect. While the Section 1603 grant was not randomly assigned, its creation came

as a plausibly exogenous shock to the industry. We exploit this shock and use a binary

indicator for whether the project came online after January 1, 2009 as an instrument for cash

grant recipient status,

Di = γ · 1 {1603 eligible}i + ξXit + νi. (9)

We then use the predicted values from this first stage, D̂, to estimate δ using equation 8

in a two-stage least squares (2SLS) framework with wind farms’ monthly output data over

2010-2014. This IV approach is similar to a fuzzy regression discontinuity design with time

as the running variable, which we implement as a sensitivity analysis in Appendix Table D.1.

Identification and interpretation of δ relies on two key assumptions: (1) that ineligible

firms cannot manipulate the date they came online to receive the subsidy, and (2) that the

instrument (subsidy eligibility) only affects outcomes through its effect on the endogenous

variable (subsidy choice).20 The first assumption is supported by institutional details. Wind

20Identification and interpretation as a local average treatment effect also relies on three other restric-
tions/assumptions. First, we know from data that the first stage is non-zero. Second, the monotonicity
assumption holds by virtue of the policy environment: firms cannot “defy” treatment assignment because the
1603 grant is only available from the Federal government. Finally, we assume homogeneous treatment effects.
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farms could not strategically adjust when they came online in anticipation of the policy, as

the policy had not even been proposed until after the January 1, 2009 eligibility date (see

Section 2.2).

To assuage concerns about the exclusion restriction, our main IV specification uses a

bandwidth of one year on either side of the start date of the policy, relying only on a

comparison of projects that came online in 2008 and 2009. This has two main advantages.

First, long-run trends in wind turbine technology and electricity markets are less likely to

influence our results. Second, projects that came online in early 2009 were planned and began

construction in 2008 (or earlier), which implies that these facilities were originally designed

for the PTC (Bolinger et al., 2010). This helps mitigate concern that 1603 grant recipients

are fundamentally different, as may be the case in later periods.

Table 3 compares projects coming online in 2008 with those coming online in 2009 using

two-sample t-tests. These two groups are statistically indistinguishable in terms of several pre-

treatment characteristics including turbine size, wind speed, regulatory status, and whether a

wind farm has entered into a PPA. Two variables which are statistically different are capacity

and whether the plant is an independent power producer. To account for this, our preffered

specification below will condition on these variables. Most importantly, the plants in these

two years have remarkably similar engineering-based potential capacity factors. However,

our outcome variable, realized capacity factor, is lower (and statistically distinguishable) for

projects coming online in 2009 than for projects coming online in 2008. This difference in

observed productivity, despite the lack of difference in potential productivity, provides an

(unscaled) preview of the main results.
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Table 3: Projects Entering One Year Before and After the Policy

2008 2009 Difference p-value

Nameplate Capacity (MW) 85.97 110.73 -24.77 0.05
Turbine Size (MW) 1.82 1.81 0.00 0.95
Design Wind Speed (MPH) 18.01 17.50 0.52 0.29
Regulated 0.13 0.12 0.01 0.81
IPP 0.58 0.79 -0.21 0.01
PPA 0.75 0.74 0.01 0.85
Potential Capacity Factor 37.50 37.24 0.27 0.84
Capacity Factor 34.47 31.85 2.62 0.01

New Wind Farms 69 77
1603 Recipients 0 51

Each row contains a two-sample t-test for a difference in means between wind farms that came online in
2008 and in 2009 and that are in the restricted sample described in Section 3. Regulated, IPP, and PPA are
binary variables. Potential Capacity Factor and Capacity Factor are ratios (scaled by 100).

As a final piece of descriptive evidence, we map the location of new wind farms in 2008

and 2009 in Figure 1. We distinguish between projects that came online in 2008 and 2009,

and, for the latter group, we further distinguish between PTC and 1603 recipients. This map

suggests there are regional factors that affect subsidy choice. This selection is not surprising

and does not undermine our empirical strategy, as our approach compares firms entering in

2009 to similar firms entering in 2008. Most projects completed in 2009, the policy period,

are located near a plant built in 2008.

Figure 1: Wind Farm Locations by Period and Subsidy

In sum, these descriptive results suggest that wind farms built just before and after the
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January 2009 policy change are broadly similar in cross-sectional characteristics, and yet the

average capacity factor of the projects coming online in 2009 is lower than that of the projects

coming online in 2008. This provides support for our research design and is suggestive of a

causal effect of the 1603 grant on electricity generation.

4.3 Matching

Our second empirical strategy uses a combination of matching and differencing to infer

counterfactual outcomes for 1603 grant recipients. Assume the unobserved component of

production takes the form νit = Ai+εit, where Ai denotes the unobserved quality of wind farm i.

Selection in our context would manifest itself as a correlation between Ai and Di. Conditioning

on Ai would eliminate this bias, as E[qit|Xit, Ai, Di = 1]=E[qit|Xit, Ai, Di = 0] + δ. Under

the assumption that Ai is time-invariant, the use of plant fixed effects with panel data would

remove this bias.

Since subsidies are irreversibly chosen at the commencement of operations, we do not

observe subsidy variation within a plant, and thus cannot include plant fixed effects. Instead,

we adopt the additional assumption that unobserved heterogeneity takes the following form,

Ai = g(Xi)+φPosti, where g() is an unknown function of observable wind farm characteristics,

and φ is a wind farm vintage fixed effect for plants entering post-ARRA. Although g() is

unknown, including a dummy variable for each unique combination of characteristics Xi

would fit any g(). The difference in productivity between two wind farms with the same

characteristics that entered in different policy periods would then simply be φ.

While we cannot fit g() exactly given that Xi contains continuous covariates and our

sample is finite, we approximate g() by matching wind farms with similar characteristics

across different vintages. We divide our sample into two groups corresponding to two policy

regimes: wind farms that entered between 2005 and 2008 (“pre” plants), when there was no

subsidy choice, and wind farms that entered between 2009 and 2012 (“post” plants), which

could choose either the PTC or the 1603 grant. We then match pre and post wind farms on

observable characteristics using coarsened exact matching.21 Let g index a group of pre and

post plants that are matched together. Equation 8 becomes,

qit = δDi + βXit + Ag + φPosti + εit, (10)

where Posti is an indicator for whether a plant came online after the 1603 program was

introduced. Intuitively, the estimator takes the average difference between 1603 recipients

21Iacus et al. (2012) outline the algorithm and derive its statistical properties. More information and
implementation packages can be found at http://gking.harvard.edu/cem.
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and their pre-period matched counterparts, and subtracts the difference between post-period

PTC plants and matched pre-plants within their group. To see this, let Dg indicate the

observed subsidy choice of the post-period plants in group g. Then

E[qit|Dg = 0, Posti = 1]− E[qit|Dg = 0, Posti = 0] = φ

E[qit|Dg = 1, Posti = 1]− E[qit|Dg = 1, Posti = 0] = φ+ δ

In practice, we replace φ with fixed effects for cohort (i.e., the first year each wind farm

generated electricity), and allow group-level unobservables to vary by time.

Matching requires us to drop plants that do not lie within the common support of pre

and post period entrants on key observable dimensions. Within the set of plants that remain,

identification requires assuming there are no unobservables that affect both production

changes across pre and post plants and subsidy choice (i.e., unconfoundedness). We also

assume the covariates used for matching are unaffected by the availability of the 1603 grant.

While we cannot directly assess this assumption, the long development timeline of wind

farms reduces concern over any large responses on this dimension. Moreover, the IV analysis

addresses precisely this concern.

The primary concern with the IV estimator is that the instrument, time, may be picking

up other trending factors that affect productivity. Our matching estimator relaxes this by

allowing unobservable dimensions of wind farm entry cohorts to evolve over time. The key

assumption is parallel trends in these unobservable factors across the types of plants that

choose each subsidy in the post period.

4.4 Extensive Margin Selection

Selection on the extensive margin could invalidate both of our empirical strategies. While our

IV and matching methods address concerns about selection between subsidies for new plants,

and the timing of the 1603 grant introduction prevented selection into the set of previously

proposed plants in the process of being designed and constructed, our estimates could still be

confounded by selection if the 1603 grant leads more already proposed plants to be completed

than would have been completed otherwise. If more proposed plants are placed into service

in the post-period because of the 1603 grant, and these marginal plants are of relatively low

productivity (conditional on observables), any estimated effects of the 1603 grant could be

the result of this selection rather than a causal, intensive margin effect of the investment

subsidy.

To determine whether this form of selection might be present, we collect data on proposed
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plants from Form EIA-860 and inspect the rate at which proposed plants were completed

around the time of the introduction of the 1603 grant. Figure 2 presents the share of plants

that are completed within one year of their original expected completion year, plotted by

expected completion year. The patterns look very similar during the policy period and the

years preceding it, and, importantly, the share of plants that are completed does not appear

to increase in response to the investment subsidy.22 While this is only graphical evidence, it

appears unlikely that the empirical strategies employed will be confounded by unobservably

low quality plants being differentially screened into the sample during the post period.

Figure 2: Share of Plants Completed on Time, Plotted by Year of Initial Expected Completion

5 Results

5.1 Instrumental Variables Strategy

Table 4 reports the instrumental variable results. The sample is restricted to a balanced

panel of monthly generation from 2010 to 2014 at wind farms that came online in 2008 or

2009. The dependent variable in each regression is the capacity factor in percentage points.

22We also graph the share of plants that are ever completed by year of initial proposal in Appendix
Figure D.1. The story here is similar, with respect to the policy period. This graph also shows that the
large drop in on-time completions in 2013 in Figure 2 indicates delay, not termination of these post 1603
projects. During this time, there was considerable uncertainty about the continuation of the PTC, which was
ultimately extended.
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Table 4: Instrumental Variables Estimates

(1) (2) (3) (4) (5) (6)

1603 Grant -5.148∗∗∗ -3.626∗∗∗ -2.842∗∗∗ -3.697∗∗∗ -2.893∗∗ -3.156∗∗∗

(0.915) (0.899) (0.829) (1.351) (1.238) (1.170)

Regulated -1.562 -5.439∗∗∗ -1.371 -5.446∗∗∗

(1.712) (1.979) (1.685) (1.970)

PPA -0.648 -2.608∗∗∗ -0.600 -2.618∗∗∗

(1.048) (0.927) (1.056) (0.925)

IPP -1.350 -2.554∗ -1.408 -2.514∗

(1.333) (1.351) (1.305) (1.307)

Potential Capacity Factor 0.501∗∗∗ 0.551∗∗∗ 0.503∗∗∗ 0.553∗∗∗

(0.0366) (0.0391) (0.0368) (0.0386)

Var(Wind Speed) 0.0400 -0.426∗∗∗ 0.0637 -0.432∗∗∗

(0.148) (0.103) (0.155) (0.107)

log(Capacity) -0.567 0.571 -0.605 0.580
(0.429) (0.471) (0.430) (0.470)

Regression Type OLS OLS OLS 2SLS 2SLS 2SLS
Controls N Y Y N Y Y
State FE N N Y N N Y
R-sq. 0.372 0.557 0.660 - - -
N 8752 8752 8752 8752 8752 8752
First-stage F-stat. 148 169 113

The dependent variable is the capacity factor in percentage points. Data include a balanced panel of monthly
observations from 2010 to 2014 for all wind farms. All models contain year-month dummies. Standard errors
clustered by wind farm reported in parentheses.

The primary coefficient of interest (δ) appears in the first row of the table, labeled 1603

Grant. The first three columns present OLS estimates of equation 8. Column 1 includes only

time (month-year) dummies. The interpretation is that plants receiving output subsidies

operated at 5 percentage points lower capacity factor compared to PTC recipients coming

online between 2008 and 2009. Column 2 adds controls for plant size and monthly wind

quality, as well as dummies for whether the plant is regulated, whether it is owned by an

independent power producer, and presence of a power purchase agreement.23 Consistent with

the descriptive evidence above, 1603 and PTC plants differ on observable dimensions, and

controlling for these differences reduces the estimated productivity gap. Column 3 adds state

fixed effects to account for other unobserved differences in markets and renewable policies

across states, which attenuates the relationship further.

23Unless otherwise noted, the same controls appear in every model throughout the paper. Additional
discussion of the potential capacity factor and wind speed variables is provided in Appendix A.2.
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Columns 4-6 present IV estimates using the same covariates, instrumenting for 1603 receipt

with an indicator for whether the wind farm was eligible for the 1603 program. Conditioning

only on month of sample, 1603 plants are 3.7 percentage points less productive than their

PTC counterparts. This difference is considerably smaller than the OLS estimate in column 1.

Adding controls results in a modestly lower estimated 1603 effect of 2.9 percentage points, and

is our preferred specification. Column 6 adds state fixed effects, which effectively discards 25

percent of the sample for which there is no within-state subsidy variation. The estimate splits

the difference between the previous two, leaving a 3.2 percentage point gap in productivity

across plants choosing the two subsidy types. Our preferred estimate of 2.89 implies that

1603 grant recipients would have produced roughly 10 percent more power had they claimed

the PTC. To provide context for the magnitude of this estimate, note that it is in line with

industry claims for how post-construction wind farm optimization services could increase

output (see discussion in Section 2). The marginal incentive of the PTC is quite substantial

during this time period, providing more than a 40 percent premium over the average price of

power sold by wind farms to the grid. As such, the estimate in column 5 implies a supply

elasticity of around 0.25.

Robustness Analysis

We assess the sensitivity of our results to the assumed sample bandwidth. The primary

motivation for doing this is concern about violations of the exclusion restricton. Since our

instrument is based on time, we are concerned that it will pick up other factors that impact

wind farm productivity independent of the policy. Furthermore, although we believe it is

highly unlikely that wind farm developers could have made significant changes to projects

that began operations in 2009 after first learning about the policy, that possibility becomes

more remove as we shorten the sample around the policy introduction. Of course, smaller

bandwidths generate smaller samples, lessening the statistical precision of our estimates.

Figure 3 presents coefficients from the preferred specification in column 5 in graphical form

using alternative bandwidths ranging from three months to 24 months on each side of the

policy change. Although the confidence intervals are large for the very small bandwidths, the

results are consistent and reinforce our baseline findings: all specifications suggest receipt of

the 1603 grant (investment subsidy) leads firms to produce less electricity than they would

have if they had received the PTC (output subsidy). Moreover, the fact that the point

estimates remain remarkably stable between nine and twenty-four months assuages concerns

that the results are driven mainly by time trends.
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Figure 3: IV Estimates using Alternative Bandwidths

We also consider the possibility of trends within the 2008-2009 time period in technology,

site quality, and other factors that could have persistent effects on output. Table D.1 presents

results from a parametric fuzzy regression discontinuity model that includes piecewise linear

trends. Unfortunately, given the small sample size, these results are quite noisy. In models 4

and 5, the point estimates are larger in magnitude than the IV estimates, while in model 6

the results are smaller and not statistically distinguishable from either the IV estimates or

zero. The variability in these estimates may be the result of weak instruments, as they have

relatively small first-stage F-statistics.

5.2 Matching Strategy

We now present results from the matching estimator described in Section 4.3. We match

exactly on several categorial variables (geography, wind quality class, regulatory status, and

entity type) and two coarsened continuous variables (capacity and design wind speed). This

procedure selects all pre-period wind farms within the same coarsened cell in the covariate

space as each post-period wind farm.

Table 5 compares pre- and post-period entrants after using coarsened exact matching with

state as the geography. Of the 465 wind farms in our sample entering between 2005 and 2012,

204 lie within the common support of these variables across the two policy periods.24 The

24The number of post-period matches is higher than pre-period matches because more post-period plants
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number of post-period 1603 matches is about double the number of PTC matches, which is in

line with their underlying population probabilities. T-tests confirm that this restricted sample

is in fact balanced across the two time periods on the matched dimensions. In particular, the

two dimensions that were imbalanced in the IV sample, capacity and IPP status, are now

statistically equivalent across the pre and post periods in this sample by construction.

Table 5: Matching Balance

Pre Post Difference p-value

Nameplate Capacity (MW) 101.91 105.39 3.48 0.74
Turbine Size (MW) 1.78 1.89 0.11 0.05
Design Wind Speed (MPH) 17.92 17.46 -0.45 0.14
Regulated 0.09 0.09 0.00 1.00
IPP 0.89 0.89 -0.00 1.00
PPA 0.82 0.77 -0.05 0.42
Potential Capacity Factor 36.76 37.39 0.63 0.53
Capacity Factor 34.01 32.80 -1.21 0.14

Wind Farms 86 118
1603 Recipients 83

Each row contains a two-sample t-test for a difference in means between wind farms that came online before
versus after January 1, 2009 that meet sample restrictions described in Section 3 and are selected using
coarsened exact matching. See text for more details on the matching procedure. Regulated and IPP are
identical across samples by construction. Regulated, IPP, and PPA are binary variables. Potential Capacity
Factor and Capacity Factor are ratios (scaled by 100).

Table 6 reports the results from regressions estimated through variations of this matching

strategy with a balanced sample of monthly wind farm production data. As before, the

dependent variable in each regression is the capacity factor measured in percentage points.

All models include the same controls as our preferred IV regressions as well as dummies for

cohort (i.e., the first year each wind farm generated electricity). Column 1 presents estimates

from estimating OLS on the full sample including all 465 wind farms entering during the pre-

or post-period. Column 2 restricts the sample to plants matched across periods. Column

3 includes matched group fixed effects. Column 4 interacts those group fixed effects with

year of sample, allowing for unobserved factors that affect specific groups and vary over time.

Column 5 includes group-year-month fixed effects.

Simply restricting the sample to observably similar plants across periods increases the

estimated impact of the 1603 grant from 2.9 to 4 percentage points. This suggests that

there are low productivity PTC plants and/or high productivity 1603 plants that do not

fall within the same coarsened cell than do pre-period plants.
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lie in the common support across periods. Allowing for increasingly time-varying group

level unobservables has remarkably little effect on the estimates. The estimated productivity

reduction in column 4 of 3.72 percentage points (12 percent) is similar to our preferred IV

estimate, despite relying on different identifying assumptions.

Table 6: Matching Estimates

(1) (2) (3) (4) (5)

1603 Grant -2.942∗∗∗ -3.975∗∗∗ -3.862∗∗∗ -3.716∗∗∗ -3.633∗∗∗

(0.719) (1.063) (1.019) (1.033) (1.159)

Sample All Matched Matched Matched Matched
FEs State State Group Group*Y Group*Y*M
R-sq. 0.615 0.623 0.632 0.642 0.762
N 21303 10106 10106 10106 10106

The matched sample was constructed using coarsened exact matching on state, wind quality class, regulatory
status, entity type, capacity, and design wind speed. All models include the controls listed in the IV models
in Table 4: log capacity, potential capacity factor, and wind speed variance, as well as dummies for whether
the plant is regulated, whether it is an IPP, the presence of a PPA, and month of sample. All models also
include cohort dummies. Standard errors, clustered at the plant level, are reported in parentheses.

Robustness Analysis

The most restrictive matching criteria in the previous exercise is the requirement that pre

and post plants be in the same state. In order to explore the impact of this assumption, and

to incorporate more plants into the analysis, we re-estimate the model from column 4 under

different geographic restrictions (Table 7). As above, all models use coarsened exact matching

on geography, wind quality class, regulatory status, entity type, capacity, and design wind

speed. In addition, column 1 matches on NERC region as well as an indicator for whether the

plant is in an ISO. Column 2 matches on the specific ISO a plant participates in, and column

3 matches on both NERC region and ISO. Finally, column 4 matches on state, repeating

column 4 from the previous table. In addition to controls, month of sample dummies, and

matched group-year dummies, each of the first three models also include state fixed effects to

account for differences in state-level renewable policies. As in the previous table, the results

increase slightly as increasing restrictions are placed on the matching procedure. However,

we cannot statistically discern among the coefficient estimates.

5.3 Section 1603 Program Evaluation

The previous sections provided evidence that 1603 recipients would have generated significantly

more output had they claimed the PTC. In order to calculate the full effect of the 1603
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Table 7: Sensitivity of Matching Estimates to Geographic Restrictions

(1) (2) (3) (4)

1603 Grant -2.989∗∗∗ -3.362∗∗∗ -3.472∗∗∗ -3.716∗∗∗

(0.918) (0.961) (1.032) (1.033)

# Pre-PTC 108 100 90 86
# Post-PTC 54 51 44 35
# Post-1603 116 87 78 83
Region Nerc-1(ISO) ISO Nerc*ISO State
R-sq. 0.634 0.677 0.661 0.642
N 13439 11724 10577 10106

Matched samples constructed using coarsened exact matching on geographies listed in the table, wind quality
class, regulatory status, entity type, capacity, and design wind speed. All models include the controls listed
in the IV models in Table 4: log capacity, potential capacity factor, and wind speed variance, as well as
dummies for whether the plant is regulated, whether it is an IPP, the presence of a PPA, and month of
sample. All models also include cohort dummies, matched group-year fixed effects, and state fixed effects.
Standard errors, clustered at the plant level, are reported in parentheses.

program, however, we need to consider that some 1603 recipients may not have found it

profitable to enter without investment subsidies. Section 4.4 presented graphs which showed

no discernable shift in entry rates during the 1603 period. In this section, we perform a

back-of-the-envelope calculation to identify “marginal” plants, i.e., power plants claiming

the 1603 grant that appear profitable under the investment subsidy but not the PTC. We

describe this calculation briefly here and provide additional details in Appendix B.

We specify the following discounted profit functions under each subsidy regime:

π1603
i =

t=25∑
t=1

(
1

1 + r

)t

(pit − ct)Q1603
it − (0.7)Fi

πPTC
i =

t=25∑
t=1

(
1

1 + r

)t

(pit − ct)QPTC
it +

t=10∑
t=1

(
1

1 + rPTC

)t

(PTC)QPTC
it − Fi

Wind farms are assumed to remain in service for 25 years (t), with output predicted to decay

at a linear rate estimated using the full panel of wind farms. Plant-specific output prices (pit)

are computed based on revenue and sales quantities reported on EIA Form 923.25 We also

include in pit estimated marginal revenue from the sale of renewable energy credits under

state-level renewable portfolio standards using data from Marex Spectron and Lawrence

Berkeley National Laboratory. Operations and maintenance costs (ct) of $9/MWh are taken

from Wiser and Bolinger (2016). Marginal net revenue is combined with an estimate of

25Of the 192 1603 plants in the sample, six do not report any resale quantities in the EIA data and are
thus excluded from this analysis. Future prices are assumed to remain constant in real terms.

25



output (Qit) to construct annual net revenue, which is discounted at an assumed 5 percent

real interest rate (r). Fixed investment costs (Fi) are obtained by dividing the observed

1603 grant award amount from Treasury by the fraction of investment costs covered by the

program (0.3).26

Output under the 1603 (Q1603
it ) is obtained by converting predicted capacity factor (q1603it )

to electricity generation using plant capacity. Counterfactual output under the PTC (QPTC
it )

is obtained by increasing q1603it by 3.3 percentage points (reflecting the average of our preferred

IV and matching results) for the first ten years of operation, and then converting this to

electricity generation using plant capacity. During this period, each MWh produced also

generates $23 in tax credits, in addition to the marginal revenue collected under the 1603.

However, these tax credits need to monetized, and are thus less valuable than cash. As

discussed in Section 2, the creation of the 1603 grant program reflected concerns that wind

developers could not find tax equity partners—large financial companies with sufficient tax

liabilities to monetize the PTC—due to the financial crisis. Bolinger (2014) reports that the

tax equity yield remained fairly stable at six percent over 2005-2007. Over 2008-2009, this

yield increased by as much as 450 basis points, reflecting the contraction in tax equity supply.

In order to account for this additional cost of monetizing tax equity, we discount the PTC

revenue streams by an assumed 8 percent tax equity yield, which is the modal value of the

tax equity yield over 2009-2012 presented in Bolinger (2014).27

Table 8 summarizes these two constructed profit measures for 1603 grant recipients. The

first two columns of the table report predicted lifetime output along with the total observed

1603 award amount. The third column presents the ratio of total subsidy to total discounted

output, which can be interpreted as the public funds levelized cost of energy (LCOE). The

final three columns present predicted output, subsidy in present value terms, and public

funds LCOE for these projects had they claimed the PTC instead of the 1603 grant. Plants

are assigned to one of three groups: an always profitable group (π1603 > 0 & πPTC > 0),

a marginal group (π1603 > 0 & πPTC < 0), and a never profitable group (π1603 < 0 &

πPTC < 0).28 Somewhat surprisingly, 25 percent of 1603 recipients fall into this final category.

26Wind farms are also eligible for accelerated depreciation, which we assume is equal to 10 percent of
investment costs. In a 2010 White House Memorandum to the President, leaked to multiple news outlets,
the Shepherds Flat Wind Farm in Oregon was revealed to have approximately $200 million in accelerated
depreciation benefits on a $2.1 billion investment. Borenstein (2015) also finds accelerated depreciation
benefits on the order of 10-12 percent of investment costs for solar power.

27Using the maximum observed yield of 10.5 percent does not meaningfully change the results. An
alternative approach would be to use the same discount rate for all revenue streams but deflate nominal PTC
revenues to reflect their real value to the wind farm. We do this using a prior estimate that firms value each
PTC dollar at $0.85 (Johnston, 2019) and find that it does not meaningfully change our results.

28There are two 1603 recipients that we find to be profitable under the PTC but not under the 1603. These
discrepancies could be due to data limitations (e.g., inaccurate prices) or a result of investments that turned
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There are many potential reasons for this. One simple explanation is mean reversion. For

some facilities, only a handful of years are observed to construct output projections, so

our approach could understate the profits of wind farms that had low output realizations

during the years we observe. We may have also underestimated state and local subsidies

or overestimated O&M costs and discount rates for some facilities. However, even if we

had perfectly accounted for all of these factors, it is likely that some plants that appeared

profitable ex ante will be unprofitable ex post due to low price and wind realizations.

Table 8: Estimated Subsidy by Group

1603 PTC

Group N Output
(MMWh)

Subsidy
($M)

Subsidy
($/MWh)

Output
(MMWh)

Subsidy
($M)

Subsidy
($/MWh)

Always Profitable 132 598 7,120 18.68 634 7,009 17.12
Marginal 7 17 334 30.41 18 215 17.79
Never Profitable 47 186 2,621 21.91 198 2,265 17.47

Estimated electricity generation and subsidy for 1603 recipients, divided into three groups depending on their
estimated profitability under the 1603 grant and the PTC. Output is a lifetime sum without discounting,
Subsidy is in net present value terms, and Subsidy per MWh is constructed by taking the ratio of the sum
of discounted subsidy expenditures to the sum of discounted electricity generation as in the definition of
the LCOE. The first set of numbers correspond to outcomes under the subsidy they chose. The second set
presents a counterfactual for the subsidy they did not choose.

Estimating the full effect of the 1603 program requires taking a stand on the counterfactual

entry status of the never-profitable group. One possibility is to assume that the never-profitable

plants are in fact marginal, and would not have entered without the 1603 grant program.

Under this assumption, the 1603 program increased lifetime wind production by 167 MMWh

(reflecting the difference between the total output under the 1603 column and the output for

the always-profitable group under the PTC column). This would also imply that the 1603

grant increased the average public cost per wind MWh from $17.12 to $19.69, a 15 percent

reduction in cost-effectiveness.

In our view, this assumption is unlikely, given the graphical evidence on entry rates

presented in Figure 2. Instead, it seems more plausible that the apparent lack of profitability

of the third group in Table 8 implies a policy-invariant unobservable (possibly in expectation)

that would have encouraged these wind farms to enter with or without the 1603 grant. Under

this assumption, the 1603 grant program screened in just 17 MMWh of production at the

out to be unprofitable ex post. We include them in the always profitable group for this analysis, as the
fact that we underestimate their expected profits under the 1603 program gives us no reason to believe we
overestimate their expected profits under the PTC.
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seven marginal plants. At the same time, production at inframarginal plants declined. Under

this assumption, our preferred assumption, total wind output would have been modestly

higher without the 1603 program (by 31 MMWh, or 4 percent), while total government

expenditure would have declined by $801 million. The average public cost per wind MWh

would have increased from $17.20 to $19.69, a 14 percent reduction in cost-effectiveness.

Let us acknowledge a few caveats to this analysis. First, our estimate of always-profitable

wind farms may be too high based on our assumption of the discount rate associated with

the PTC. The tax equity supply shock associated with the financial crisis motivated the

creation of the Section 1603 grant program. This decline in supply is evident in the spike in

tax equity yields in 2009. We employed a higher rate for discounting the PTC streams in

evaluating the counterfactual for our 1603 grant-claiming wind farms to reflect the increase

in tax equity yields during this time period. This higher discount rate may be valid for

evaluating the marginal project, but it could be too low when considering the counterfactual

of all of the 132 always-profitable 1603 grant claimants going to the tax equity market to

monetize their production tax credits. Second, note that our conclusions about the Section

1603 grant program reflect the specific policy design of a grant equal to 30 percent of eligible

investment costs relative to the specific PTC design of awarding $23 per MWh of output.

Modifying either policy parameter could influence the cost-effectiveness of the investment

and output subsidy approaches.

6 Discussion

6.1 Negative Electricity Prices

Our empirical results are consistent with a model of convex effort costs on the intensive margin.

However, even in the absence of convex operating costs, output subsidies could mechanically

encourage more output by incentivizing production when the marginal willingness to pay for

electricity is below zero. In electricity markets, prices sometimes fall below zero during periods

of low demand due to a combination of inflexible supply, prohibitively expensive storage, and

transmission constraints. In these periods, wind farm operators who receive the PTC should

be willing to pay at least as much as the value of the subsidy to be dispatched each time

period, whereas 1603 recipients would have less of an incentive to supply electricity.29

How much of the difference in output across PTC and 1603 plants can be attributed to

negative prices? If we observed hourly bids and clearing prices for all the plants in our sample,

29Both types of firms may receive other subsidies or be party to contracts that give them an incentive to
produce electricity when the price is negative. We focus here on the differential incentives attributable to the
Federal subsidies we study.
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we could compute this number directly. Unfortunately, these data are not available. In lieu

of this, we first collect high-frequency wholesale electricity prices at all nodes (i.e., locations)

for six large U.S. electricity markets. For each wind farm in our sample, we use these data to

compute the frequency of negative prices at the closest node on a monthly basis from 2011 to

2014. Appendix C provides more detail on these price data and presents summary statistics.

Negative price shares vary considerably across time and space, however averages in excess of

our estimated 1603 capacity factor decline are common (Appendix Table C.1).

Comparing these averages to our estimated 1603 productivity effect requires making

an assumption about the correlation between negative price events and the availability of

each wind farm to be dispatched. As was discussed above, on average wind farms only

have sufficient wind conditions to operate about one-third of the time. If we assume that

availability perfectly coincides with negative prices, then these marginal frequencies can

be compared directly to the estimated policy effects. If they are uncorrelated, then these

marginal frequencies should be divided by three (on average). We estimate this correlation

directly by running the following regression on the full sample of wind farms we are able to

match to pricing nodes:

qit = α {Shareit < 0}+ βDi {Shareit < 0}+ νi + µt + εit, (11)

where qit is the capacity factor and Shareit is the share of hours each month when the price

at the nearest node was below zero (both in percentage points). νi and µt are plant and

month-of-sample fixed effects, and Di is an indicator for whether plant i received a 1603 grant,

as in equation 8. We also include potential capacity factor and wind variance as controls.

Table 9 presents the results. β reflects the extent to which negative prices differentially affect

production by 1603 plants. The estimated effect of a 0.29 percentage point reduction in

capacity factor for every percentage point increase in the share of negative price hours is

statistically indistinguishable from the average capacity factor of 1603 plants in the sample,

30, presented in the bottom of the table. We interpret this as evidence that eliminating

hours with negative prices would generate the same differential output response as would an

equivalent increase in the number of hours in which 1603 plants operate at their observed

capacity factor.

To approximate the contribution of negative prices to the estimated 1603 treatment effect,

we re-estimate our preferred IV and matching regressions after adjusting the dependent

variable for negative prices on the basis of this evidence. Specifically, for 1603 plants, we

compute the product of the observed capacity factor and the share of negative prices at

the nearest node, and add this number to the dependent variable (capacity factor). The

results are presented in Table 10. These results suggest that negative prices explain roughly
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Table 9: Negative Prices and 1603 Plant Productivity

Capacity Factor

Share < 0 0.057∗

(0.023)

Share < 0 - 1603 Grant -0.29∗∗∗

(0.064)

Mean(Y) - 1603 Grant 30.12
R-sq. 0.70
N 13638

Results from ordinary least squares estimation of equation 11. The dependent variable, capacity factor, and
the share of negative prices are both in percentage points. The model includes potential capacity factor,
wind speed variance, and plant and month-of-sample fixed effects. Data include a balanced panel of monthly
observations from 2011 to 2014 for all wind farms. Standard errors clustered by wind farm reported in
parentheses.

40 percent, at most, of the electricity generation increase caused by replacing investment

subsidies with output subsidies.

Table 10: Effect of Negative Prices on Preferred Estimates

(1) (2) (3) (4)

1603 Grant -2.893∗∗ -2.542 -3.716∗∗∗ -2.184∗∗

(1.238) (1.769) (1.033) (1.099)

Estimator IV IV Match Match
Negative Price Adjustment No Yes No Yes
N 8752 6336 10106 7054

Results from our preferred IV and matching estimators with and without adjusting for the frequency of
negative prices. Data include a balanced panel of monthly observations from 2011 to 2014 for all wind farms.
Standard errors clustered by wind farm reported in parentheses.

While it is useful to understand the mechanism behind our productivity estimates, the

extent to which they are driven by negative prices does not necessarily alter their policy

implication. The motivation for subsidizing wind energy is to displace conventional, polluting

generation with zero-emissions electricity. This logic does not necessarily change simply

because the equilibrium wholesale price is below zero, as the full social value of wind energy

depends on the emissions intensity of marginal generation during these hours. In other words,

the wholesale electricity price is not a sufficient statistic for the welfare impact of a given

unit of electricity generated from wind.

Determining whether the marginal emissions displaced from wind energy are higher or
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lower during periods of negative prices is beyond the scope of this paper. However, Callaway

et al. (2018) provide estimates of the average marginal operating emissions rates of generating

resources by hour of day and season for each ISO. We use their data to provide evidence on

both the level of emissions rates and the correlation between negative prices and emissions

rates. Detailed results are again presented in Appendix C. In all six electricity markets,

average marginal operating emissions rates are positive and large during all hours and seasons.

In four of the six electricity markets, average marginal emissions are actually higher during

seasons and hours of the day where negative prices are more common. Thus, in these markets,

the fact that some of the estimated treatment effect comes from willingness to operate at

negative prices could be considered a feature of subsidizing output rather than subsidizing

investment, not a bug. The purpose is to reduce emissions, and the net benefits from emissions

reductions can still be positive, even when prices are not.

With that being said, the fact that there is substantial variation in average marginal

operating emissions rates, but no variation in the subsidy awarded for each unit of electricity

under the PTC, indicates that the PTC is a poor substitute for a Pigouvian emissions

tax. In the two markets where emissions are negatively correlated with negative prices,

California and New England, nuclear power and hydropower often provide zero-emissions

baseload generation. In these regions, output subsidies to renewable generators could actually

undermine long-run, system-wide emissions objectives. By reducing revenue for these high

capacity factor, high fixed cost, low-emissions electricity sources, the PTC could expedite

their retirement. It is unlikely that this effect dominates the environmental benefits of the

PTC, but this highlights another shortcoming of subsidizing renewable electricity relative to

pricing the emissions externality directly.

6.2 Input Mix Distortions

The 1603 grant program was a non-uniform input subsidy. Certain capital inputs, most

notably wind turbines, were subsidized, while other inputs, like land and transmission

equipment, were not. When faced with a shift in the relative price of inputs, firms will

likely alter their input mix, either by employing relatively more subsidized inputs or by

selecting higher quality subsidized inputs (as found for other industries in Goolsbee, 2004).

Whether this input response increases or decreases public cost-effectiveness depends on the

substitutability of inputs and the elasticity of output with respect to inputs at the margin

(Parish and McLaren, 1982). However, such distortions are clearly socially inefficient.

Our previous analysis estimated the productivity effect of removing output subsidies
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conditional on the input mix of each firm.30 This was partially motivated by the fact that,

due to long lead times, plant inputs were fixed during the early part of the 1603 program.

However, the program did run for four years, likely giving some later developers time to tailor

their investments to the 1603 grant. In this section, we look for evidence of a shift in the

input mix for plants selecting the 1603 grant program relative to the input mix for plants

selecting the PTC as inputs became more flexible over time.

The effect of the policy change on the total capacity of any project is ambiguous, given

that the output subsidy also encourages larger projects through increased operating revenue.

However, the fact that turbines are subsidized while land is not suggests that, conditional

on project size, 1603 developers should prefer to use larger turbines and less land. Figure 4

plots the average turbine size (megawatts, top panel) and footprint (square miles per turbine,

bottom panel) by year of entry and subsidy type. In general, turbines have been getting

larger over time. While there is no difference in these raw averages across subsidy types in

the first two years of the 1603 program, towards the end of the sample, plants selecting the

capital subsidy use substantially larger turbines. Conversely, 1603 plants were using relatively

more land when inputs were likely fixed, and substantially less during the latter half of the

program when there may have been time to adjust.

30Specifically, our preferred specifications for both estimation strategies include plant-turbine-specific
estimates of potential output each month.
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Figure 4: Input Choices by Year of Entry and Subsidy Type

Given the small sample, these apparent differences in input choices could be driven by

other changes in project composition over time. We test for time-varying differences in the

groups using the following regression,

yi = α{1603}+
t=2012∑
t=2010

αt{1603 & yeari = t }+ βXi + ηyear + εi, (12)

where 1603 indicates that a wind farm claimed the 1603 grant, yeari is the year that a

plant entered, and ηyear represents year of entry fixed effects to account for trends in these

variables over time that are common across subsidy groups. In some specifications we include

additional characteristics in Xi. As specified, α reflects pure selection, based on the difference

in inputs between projects that select the 1603 and PTC during 2009 when land and turbine

choices were fixed. The remaining αt then reflect how this selection changed over time.

Table 11 reports the results. In column 1, the dependent variable is turbine size, and we

omit the control vector Xi. Consistent with the picture in the top panel of figure 4, 1603

plants start off with indistinguishable turbines in 2009, but then become significantly larger

at the end of the sample. Column 2 adds controls for project size, regulatory and IPP status,

and wind speed, and column 3 adds state fixed effects as well. The estimated change in the

relative size of PTC and 1603 plants is large and significant in all three specifications, and
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represents a roughly 15 percent increase in relative turbine size as developers adjust their

inputs. Columns 4 through 6 repeat these regressions using plant footprint (square miles

per turbine) as the dependent variable. In the early years, when sites were selected prior to

knowledge of the subsidy, 1603 plants are actually less densely packed than those receiving

the output subsidy. But in the latter years, this selection is reversed, representing a more

than 50 percent decline in footprint per turbine.

Table 11: Change in Wind Farm Characteristics over Time

(1) (2) (3) (4) (5) (6)

1603 Grant -0.070 -0.055 -0.037 0.11∗ 0.088 0.075
(0.11) (0.11) (0.11) (0.058) (0.057) (0.070)

1603 - Enter 2010 0.11 0.13 0.018 0.13 0.12 0.17
(0.20) (0.21) (0.22) (0.11) (0.097) (0.11)

1603 - Enter 2011 0.12 0.13 0.063 -0.31∗∗∗ -0.20∗∗ -0.11
(0.16) (0.15) (0.15) (0.093) (0.082) (0.096)

1603 - Enter 2012 0.32∗∗ 0.30∗∗ 0.24∗ -0.23∗∗∗ -0.17∗∗ -0.12
(0.14) (0.14) (0.14) (0.085) (0.082) (0.085)

Outcome Turbine Size Turbine Size Turbine Size Footprint Footprint Footprint
Controls N Y Y N Y Y
State FE N N Y N N Y
R-sq. 0.13 0.16 0.25 0.072 0.24 0.40
N 465 465 465 410 410 410

Three specifications of equation 12, are run for two different dependent variables, Turbine Size (MW) and
Footprint (Square Miles / MW). Sample restricted to plants entering post 2004. Footprint regressions
exclude single turbine plants and plants for which AWEA does not have turbine location information. All
models contain cohort (year of entry) dummies. Controls added in columns 2 and 5 include the log of
capacity, dummies for IPP and regulatory status, and design wind speed. Robust standard errors reported in
parentheses.

The short lifetime of the 1603 program limits our ability to draw conclusions about how

the capital stock would adjust in response to a permanent policy change. Nevertheless, there

does appear to be some evidence that firms adjust their input mix over time in response to a

change from output to investment subsidies. This illustrates the importance for policymakers

of considering the impacts of subsidy design on firms’ long-run responses when choosing

between these policy instruments.

7 Conclusion

Governments often face a choice between using investment subsidies and output subsidies

to encourage economic activity. Whether one or the other is more cost-effective depends on

the primitives of the production function being targeted. While subsidies on both margins
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are employed in a wide range of sectors, from energy to affordable housing, there is limited

evidence on how well targeted these subsidies are in practice.

In this paper, we exploit a natural experiment in which wind farms were unexpectedly

provided a choice between investment and output subsidies to directly estimate their relative

cost-effectiveness. We find that by removing subsidies to increase output on the margin, the

Section 1603 grant program caused wind farms to generate 10 to 12 percent less power than

they would have under the PTC. While this negative output effect conditional on operating

could have theoretically been offset by an increase in the number of projects built, we find

little evidence of a meaningful extensive margin response during the short four year lifetime

of the program. As a result, we estimate that the Federal government paid 14 percent more

per unit of output from these wind farms than they would have under the PTC.

The first best solution to the problem of negative externalities would be to tax externality

generating activities directly, rather than to subsidize substitutes. Indeed, we document

evidence that the uniform wind output subsidy used in the U.S. likely provides a poor

approximation to an emissions tax. Nevertheless, the widespread employment of subsidies

rather than taxes motivates studying their relative performance. Our results suggest that the

returns to selecting the best among these suboptimal policies can be quite large.
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Appendix A Data Appendix

A.1 Additional Information on Data Sources and Cleaning

Information on how to obtain each data source, along with code for replication is available

on https://github.com/rlsweeney/public ags output subsidies.

Additional Information on the Primary Data Sources

• Survey Form EIA-860 collects generator-specific information on an annual basis about

existing and planned generators and associated environmental equipment at electric

power plants with 1 megawatt or greater of combined nameplate capacity.

• Survey Form EIA-923 collects detailed electric power data—with both monthly and

annual frequency—on electricity generation, fuel consumption, fossil fuel stocks, and

receipts at the power plant and prime mover level.

• The American Wind Energy Association (AWEA) collects detailed information about

all of its members and makes these data available as part of its membership subscription.

The database includes more than 60 fields. We use the data to determine the presence

and terms of any power purchase agreements and to construct a measure of the footprint

of each wind farm.

• 3TIER windspeed data provides hourly estimated wind speed data from 2000 to 2014

for every wind farm in the EIA database.31

• The Department of the Treasury reports data on Section 1603 grant claims. We matched

Treasury Section 1603 grant projects to EIA data based on business name, plant name,

county and state identifiers, and date placed in service. For 152 Section 1603 grants,

we could not identify a match in the EIA data. One of these is a Puerto Rico project,

which is excluded due to geography from the EIA databases. The other 151 projects

received very small grants, indicating that these projects were too small to be covered

by EIA’s EIA-860 and EIA-923 surveys. In aggregate, they represent one-half of one

percent of 1603 grant outlays for large wind projects.

A grant could be submitted for a single wind turbine, a set of turbines, or an entire

wind farm. This created two data issues. First, a wind farm could receive multiple

31These data were provided by Joern Huenteler, Gabe Chan, Tian Tang, and Laura Diaz Anadon, collected
as part of their research summarized in Huenteler et al. (2018). A handful of EIA plant locations were either
entered erroneously or downloaded improperly, and are excluded from the sample.
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Section 1603 grants. In these cases, we aggregated 1603 grants to the wind farm level

(the level of observation in the EIA databases). For example, the large Alta wind farm

in California came online in phases starting in late 2010 and its developers submitted

more than twenty 1603 grants. Second, a wind farm could be built with N turbines

that come online before 2009, for which it claims the PTC. It may then expand with

M turbines in 2009 and claim a 1603 grant for these new turbines. The EIA-observed

output for that wind farm after 2009 would reflect the aggregate production of the

N+M turbines. Since we cannot distinguish the output between the N PTC-claiming

turbines and the M 1603 grant-claiming turbines at such a wind farm, we drop the

wind farm from our sample. We identified such cases as wind farms that claimed a 1603

grant over 2009-2012, but had either substantial pre-2009 generation or a significant

change in installed capacity post-2012. Using these decision rules, we dropped thirteen

wind farms that represent less than four percent of total 1603 grant outlays for large

wind farms.

Additional Sample Restrictions There are 941 wind farms in the continental U.S. in the

EIA data. We restrict attention to plants that are private and operate as either independent

power producers or part of an investor-owned utility based on subsidy eligibility, which reduces

the sample to 817 wind farms. We also restrict the sample to plants entering before the end

of the 1603 grant period (end of 2012). There are two ways of determining when a plant is

placed into service using the EIA data: we could use either the date a plant submits to the

EIA as their first date of commercial operation or the month that a plant’s production first

appears in the production data. Conversations with EIA staff confirm that the former should

be used for determining 1603 grant eligibility. However, to avoid concerns about potential

misclassification, we exclude plants whose two entry dates suggest conflicting 1603 eligibility

status. Finally, we exclude plants that we were unable to locate in the AWEA database,

plants for which we did not have site-specific wind and turbine power curve information, and

plants for which the ratio of observed capacity factor to potential capacity factor was further

than two standard deviations from the median. This final sample of 512 plants represents

our population.

A.2 Potential Capacity Factor Construction

As described in Section 2.1, wind farm production is a nonlinear function of wind speed. This

nonlinear function is turbine-specific, as some turbines are engineered to perform particularly

well at low wind speeds, while others are optimized for high wind speeds. Wind turbine

manufacturers provide power curves for each turbine that summarize how much electricity it
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should generate at a given wind speed. Figure A.1 presents example power curves for two

of the most common wind turbines in the U.S. The Vestas turbine has a higher maximum

capacity, but the GE turbine is rated to produce power at higher wind speeds. Other turbines

are designed to generate more electricity at lower wind speeds at the expense of generating

less electricity at higher speeds.

Figure A.1: Reported Power Curves for Two Common Turbines

Rather than try to approximate this function with turbine-specific high order polynomials

of wind speed, we compute an “engineering” estimate of expected output for each turbine in

each month. We begin with estimates of the wind speed every hour at every wind farm in

our sample that come from 3TIER. We combine this with a location-specific power function

based on the wind turbine used at each wind farm to predict hourly electricity generation.

We use the ideal gas law to adjust for variation in air density, which affects the kinetic

energy available to each turbine, using location- and time-specific data on temperature and

pressure from 3TIER. Aggregating hourly predicted output over the month and dividing by

the turbine’s rated output provides us with a measure of “potential capacity factor,” which

we include as a covariate in our primary specifications.

Table A.1 demonstrates that this one-dimensional, time-varying control explains signif-

icantly more of the observed variation in capacity factor than time-invariant, site-specific

wind quality information. It also fits meaningully better than a third order polynomial in

wind speed.
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Table A.1: Explanatory Power of Alternative Measures of Potential Generation

(1) (2) (3) (4) (5)

Design Wind Speed 0.304∗∗∗ -0.0421 -0.0457 0.00542
(0.104) (0.106) (0.105) (0.0908)

Wind Speed (m/s) 0.862 2.163
(3.470) (3.527)

Wind Speed Squared 0.910∗∗ 0.797∗

(0.418) (0.419)

Wind Speed Cubed -0.0456∗∗∗ -0.0444∗∗∗

(0.0151) (0.0150)

Var(Wind Speed) 0.170 -0.156∗

(0.136) (0.0915)

Potential Capacity Factor 0.619∗∗∗ 0.638∗∗∗

(0.0224) (0.0265)

Adjusted R-sq. 0.287 0.504 0.505 0.572 0.572
N 11140 11140 11140 11140 11140

Results from linear regressions of observed capacity factor on functions of wind speed data from EIA and
3TIER, using data on electricity generation in 2013 and 2014 for wind farms that came online between 2005
and 2012.
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Appendix B Profitability Calculation Details

Calculating discounted profits under both subsidy regimes for 1603 grant recipients requires

assumptions about lifetime production, prices, operating costs, and discount rates. This

appendix discusses each of these assumptions in turn.

Predicting Lifetime Capacity Factor Wind farms are assumed to remain in service for

25 years. In order to predict output in future periods, we model realized capacity factor as a

function of plant and month-year dummies, potential capacity factor, and age:

qit = α(ageit) + βPtnlCFit+αi + µt + εit

The model is estimated using the full sample of plants that enter between 2002 and 2012.

Table B.1 presents the results using both capacity factor and log(generation) as dependent

variables.32

Table B.1: Generation Decline

(1) (2)

Age (years) -1.05∗∗∗ -0.091∗∗∗

(0.16) (0.0075)

Observations 34395 34372

Data include a balanced panel of monthly observations from 2010 to 2014 for all wind farms. All models
contain year-month dummies. Standard errors clustered by wind farm reported in parentheses.

We use this model to predict q1603it for all future periods. We then scale this output up by

the average of our preferred IV and matching estimates during the first ten years of generation

to obtain qPTC
it .

Converting Generation into Revenue In 2011, Form EIA-923 began collecting annual

resale revenue and quantity for each plant.33 We use these data to estimate the price received

by each plant.34 Figure B.1 shows that, where PPA information is available from AWEA, the

rate closely matches the EIA implied price (90% of observations in AWEA are within 10% of

32Using higher order polynomials led to implausible predictions.
33The EIA refers to these data as “resale” prices, since the purchasing utility plans to resell the power to

end-use consumers. Resale price information is missing for six of the 192 1603 facilities in the sample. This is
likely because those wind farms dispose of their output directly through a nonstandard relationship. These
plants are excluded from the policy evaluation analysis.

34Some plants report retail sales. For these sales, we use average annual retail price information at the
state level from Survey EIA 861M.
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the EIA average resale price). We assume real prices remain at their current levels in future

periods and use 2011 prices for 2009-2011.

Figure B.1: Average Resale Price (EIA) vs PPA Rate (AWEA)

Renewable Energy Certificates Data As of 2017, 29 states and Washington D.C. had

enacted RPSs. Wind farms generate credits for each unit of production, which they then sell

to covered non-renewable generators. Unfortunately, these payments are not observed in the

EIA data.

We construct estimates of the RPS payments available to wind farms in a given state-

month using bid-ask data on Renewable Energy Certificates (RECs) trades from all active

state RECs markets dating to 2007 from Marex Spectron in May 2015. To account for the

fact that some states allow covered non-renewable entities to obtain credits from qualifying

renewable facilities outside the state, we combine these state level prices with annual estimates

of cross-state REC compliance flows from Lawrence Berkeley National Lab.35 This expected

REC payment is added to the average resale price to get marginal revenue each period.

35More information on this project tracking cross-state RECs at https://emp.lbl.gov/projects/renewables-
portfolio.
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Appendix C Negative Price Analysis Details

This appendix provides more detail on the data on negative prices and emissions rates used

in Section 6.1. We collect high-frequency price data at multiple locations from six large

U.S. electricity markets: California (CAISO), Texas (ERCOT), the Eastern U.S. (PJM), the

Midwest (MISO), New England (ISONE), and New York (NYISO). Table C.1 summarizes

the likelihood of negatives prices in these six markets. The first panel contains summary

statistics for all nodes (i.e., locations), and the second panel contains summary statistics for

the set of nodes that are closest to each wind farm in our sample. Within the set of nodes

near wind farms, negative prices are more common in California, Texas, and the Midwest.

They are also less common in the summer, when demand is higher, and have generally been

coming down over this sample period. Comparing across the two panels, negative prices are

more common at nodes near wind farms than across all nodes in each ISO, although the

difference varies considerably.

Table C.1: Frequency of Negative Prices in Six ISOs (2011-2014)

CAISO ERCOT ISONE MISO NYISO PJM

All nodes
Mean 3.88 1.41 0.08 3.39 0.65 0.55
Median 2.53 0.00 0.00 1.25 0.40 0.13
95th pctile 16.26 8.21 0.00 14.43 2.02 2.42

Summer(mean) 4.59 0.74 0.01 2.95 0.67 0.69
Post 2012 (mean) 2.24 0.59 0.16 3.18 0.74 0.40
Near wind

Mean 4.07 4.73 0.09 6.12 1.20 0.99
Summer(mean) 2.25 0.31 0.01 3.72 0.83 0.82
Post 2012 (mean) 2.52 1.30 0.18 6.21 1.66 0.84
CO2 MOER

Mean 896 1,378 1,262 1,870 1,312 1,776
Mean(weighted) 873 1,457 1,169 1,916 1,408 1,778
Correlation -0.46 0.60 -0.72 0.69 0.41 0.02

Frequencies (in percentage points) based on hourly nodal price data from the six listed ISOs, collapsed to
the node-month level. Summer months are defined by the NOx regulation season, when begins in May and
ends in October. In the second Section, the sample is restricted to nodes that are the closest node to a wind
farm in the sample. The third Section of the table presents the average marginal operating emissions rate
in pounds of carbon dioxide per MWh estimated for each ISO by Callaway et al. (2018). The second row
re-weights the average by the share of negative prices in each ISO-season-hour. The final row presents the
correlation between negative prices and marginal operating emissions rates across 48 season-hour averages for
each ISO.

We augment the negative price data with marginal operating emissions rates from Callaway
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et al. (2018). Callaway et al. (2018) provide estimates of the average marginal operating

emissions rate of generating resources by hour of day and season for each ISO, which we

replicate in the first panel of Figure C.1. The second panel contains the frequency of negative

prices for the same hours and seasons. Electricity prices typically fall below zero when

demand is lowest, during the middle of the night. However, for four of the six ISOs, marginal

emissions are actually higher at night than during peak hours. This is not surprising due to

the fact that natural gas is likely to be on the margin during the day, whereas coal is more

likely to be on the margin at night. Comparing across the seasons, average emission rates are

fairly constant, compared to the variation in negative price frequency.
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Figure C.1: Marginal Emissions and Negative Price Frequency by Hour of Day and Season

Estimates of marginal operating emissions rates by hour of day and season were extracted
from the appendix of Callaway et al. (2018). Figures in the second row plot the mean share
of negative price hours by ISO for the same hours and seasons.

The third panel of Table C.1 contains average marginal emissions rates for each ISO. These

emissions rates vary across regions, but are still positive and large everywhere, even when

weighted by the negative prices in each ISO-season-hour. Finally, we present the correlation

between negative prices and marginal operating emissions rates in the last row of Table C.1.

In four of the six electricity markets, negative prices are positively correlated with marginal

operating emissions rates, suggesting that the external social value of wind energy during

these hours is at least as high as during other time periods.
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Appendix D Additional Tables and Figures

Figure D.1: Share of Plants Ever Completed, Plotted by Year of Initial Expected Completion
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Table D.1: IV Results Sensitivity: Linear RD

(1) (2) (3) (4) (5) (6)

1603 Grant -3.697∗∗∗ -2.893∗∗ -3.156∗∗∗ -6.376∗∗ -4.774∗∗ -1.346
(1.351) (1.238) (1.170) (2.520) (2.241) (2.244)

Regulated -1.371 -5.446∗∗∗ -2.305 -5.980∗∗∗

(1.685) (1.970) (1.881) (1.943)

PPA -0.600 -2.618∗∗∗ -0.465 -2.704∗∗∗

(1.056) (0.925) (1.063) (0.952)

IPP -1.408 -2.514∗ -1.883 -3.105∗∗

(1.305) (1.307) (1.337) (1.364)

Potential Capacity Factor 0.503∗∗∗ 0.553∗∗∗ 0.503∗∗∗ 0.560∗∗∗

(0.0368) (0.0386) (0.0383) (0.0362)

Var(Wind Speed) 0.0637 -0.432∗∗∗ 0.00692 -0.433∗∗∗

(0.155) (0.107) (0.160) (0.108)

log(Capacity) -0.605 0.580 -0.643 0.600
(0.430) (0.470) (0.423) (0.478)

Regression Type 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
Controls N Y Y N Y Y
State FE N N Y N N Y
Piecewise Trend N N N Y Y Y
N 8752 8752 8752 8752 8752 8752
First-stage F-stat. 148 169 113 38 32 22

Data include a balanced panel of monthly observations from 2010 to 2014 for all wind farms. The first three
columns replicate the IV results in Table 4. For columns 4 - 6, distance to the policy cutoff, and that distance
interacted with the a post-policy indicator are included as controls. All models contain year-month dummies.
Standard errors clustered by wind farm reported in parentheses.
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